-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy path_aliases.py
206 lines (179 loc) · 5.67 KB
/
_aliases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from __future__ import annotations
from ...common import _aliases
from ...common._helpers import _check_device
from ..._internal import get_xp
import numpy as np
from numpy import (
# Constants
e,
inf,
nan,
pi,
newaxis,
# Dtypes
bool_ as bool,
float32,
float64,
int8,
int16,
int32,
int64,
uint8,
uint16,
uint32,
uint64,
complex64,
complex128,
iinfo,
finfo,
can_cast,
result_type,
)
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Optional, Union
from ...common._typing import Device, Dtype, Array, NestedSequence, SupportsBufferProtocol
import dask.array as da
isdtype = get_xp(np)(_aliases.isdtype)
astype = _aliases.astype
# Common aliases
# This arange func is modified from the common one to
# not pass stop/step as keyword arguments, which will cause
# an error with dask
# TODO: delete the xp stuff, it shouldn't be necessary
def _dask_arange(
start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
xp,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs,
) -> Array:
_check_device(xp, device)
args = [start]
if stop is not None:
args.append(stop)
else:
# stop is None, so start is actually stop
# prepend the default value for start which is 0
args.insert(0, 0)
args.append(step)
return xp.arange(*args, dtype=dtype, **kwargs)
arange = get_xp(da)(_dask_arange)
eye = get_xp(da)(_aliases.eye)
linspace = get_xp(da)(_aliases.linspace)
eye = get_xp(da)(_aliases.eye)
UniqueAllResult = get_xp(da)(_aliases.UniqueAllResult)
UniqueCountsResult = get_xp(da)(_aliases.UniqueCountsResult)
UniqueInverseResult = get_xp(da)(_aliases.UniqueInverseResult)
unique_all = get_xp(da)(_aliases.unique_all)
unique_counts = get_xp(da)(_aliases.unique_counts)
unique_inverse = get_xp(da)(_aliases.unique_inverse)
unique_values = get_xp(da)(_aliases.unique_values)
permute_dims = get_xp(da)(_aliases.permute_dims)
std = get_xp(da)(_aliases.std)
var = get_xp(da)(_aliases.var)
empty = get_xp(da)(_aliases.empty)
empty_like = get_xp(da)(_aliases.empty_like)
full = get_xp(da)(_aliases.full)
full_like = get_xp(da)(_aliases.full_like)
ones = get_xp(da)(_aliases.ones)
ones_like = get_xp(da)(_aliases.ones_like)
zeros = get_xp(da)(_aliases.zeros)
zeros_like = get_xp(da)(_aliases.zeros_like)
reshape = get_xp(da)(_aliases.reshape)
matrix_transpose = get_xp(da)(_aliases.matrix_transpose)
vecdot = get_xp(da)(_aliases.vecdot)
nonzero = get_xp(da)(_aliases.nonzero)
sum = get_xp(np)(_aliases.sum)
prod = get_xp(np)(_aliases.prod)
ceil = get_xp(np)(_aliases.ceil)
floor = get_xp(np)(_aliases.floor)
trunc = get_xp(np)(_aliases.trunc)
matmul = get_xp(np)(_aliases.matmul)
tensordot = get_xp(np)(_aliases.tensordot)
# asarray also adds the copy keyword, which is not present in numpy 1.0.
def asarray(
obj: Union[
Array,
bool,
int,
float,
NestedSequence[bool | int | float],
SupportsBufferProtocol,
],
/,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
copy: "Optional[Union[bool, np._CopyMode]]" = None,
**kwargs,
) -> Array:
"""
Array API compatibility wrapper for asarray().
See the corresponding documentation in the array library and/or the array API
specification for more details.
"""
if copy is False:
# copy=False is not yet implemented in dask
raise NotImplementedError("copy=False is not yet implemented")
elif copy is True:
if isinstance(obj, da.Array) and dtype is None:
return obj.copy()
# Go through numpy, since dask copy is no-op by default
obj = np.array(obj, dtype=dtype, copy=True)
return da.array(obj, dtype=dtype)
else:
if not isinstance(obj, da.Array) or dtype is not None and obj.dtype != dtype:
obj = np.asarray(obj, dtype=dtype)
return da.from_array(obj)
return obj
return da.asarray(obj, dtype=dtype, **kwargs)
def top_k(
x: Array,
k: int,
/,
axis: Optional[int] = None,
*,
largest: bool = True,
) -> tuple[Array, Array]:
if not largest:
k = -k
# For now, perform the computation twice,
# since an equivalent to numpy's `take_along_axis`
# does not exist.
# See https://github.com/dask/dask/issues/3663.
args = da.argtopk(x, k, axis=axis).compute()
vals = da.topk(x, k, axis=axis).compute()
return vals, args
from dask.array import (
# Element wise aliases
arccos as acos,
arccosh as acosh,
arcsin as asin,
arcsinh as asinh,
arctan as atan,
arctan2 as atan2,
arctanh as atanh,
left_shift as bitwise_left_shift,
right_shift as bitwise_right_shift,
invert as bitwise_invert,
power as pow,
# Other
concatenate as concat,
)
# exclude these from all since
_da_unsupported = ['sort', 'argsort']
common_aliases = [alias for alias in _aliases.__all__ if alias not in _da_unsupported]
__all__ = common_aliases + ['asarray', 'bool', 'acos',
'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'bitwise_left_shift', 'bitwise_invert',
'bitwise_right_shift', 'concat', 'pow',
'e', 'inf', 'nan', 'pi', 'newaxis', 'float32', 'float64', 'int8',
'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64',
'complex64', 'complex128', 'iinfo', 'finfo', 'can_cast', 'result_type',
'top_k']
_all_ignore = ['get_xp', 'da', 'partial', 'common_aliases', 'np']