-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy path_aliases.py
720 lines (629 loc) · 26.6 KB
/
_aliases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
from __future__ import annotations
from functools import wraps as _wraps
from builtins import all as _builtin_all, any as _builtin_any
from ..common._aliases import (matrix_transpose as _aliases_matrix_transpose,
vecdot as _aliases_vecdot)
from .._internal import get_xp
import torch
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import List, Optional, Sequence, Tuple, Union
from ..common._typing import Device
from torch import dtype as Dtype
array = torch.Tensor
_int_dtypes = {
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
}
_array_api_dtypes = {
torch.bool,
*_int_dtypes,
torch.float32,
torch.float64,
torch.complex64,
torch.complex128,
}
_promotion_table = {
# bool
(torch.bool, torch.bool): torch.bool,
# ints
(torch.int8, torch.int8): torch.int8,
(torch.int8, torch.int16): torch.int16,
(torch.int8, torch.int32): torch.int32,
(torch.int8, torch.int64): torch.int64,
(torch.int16, torch.int8): torch.int16,
(torch.int16, torch.int16): torch.int16,
(torch.int16, torch.int32): torch.int32,
(torch.int16, torch.int64): torch.int64,
(torch.int32, torch.int8): torch.int32,
(torch.int32, torch.int16): torch.int32,
(torch.int32, torch.int32): torch.int32,
(torch.int32, torch.int64): torch.int64,
(torch.int64, torch.int8): torch.int64,
(torch.int64, torch.int16): torch.int64,
(torch.int64, torch.int32): torch.int64,
(torch.int64, torch.int64): torch.int64,
# uints
(torch.uint8, torch.uint8): torch.uint8,
# ints and uints (mixed sign)
(torch.int8, torch.uint8): torch.int16,
(torch.int16, torch.uint8): torch.int16,
(torch.int32, torch.uint8): torch.int32,
(torch.int64, torch.uint8): torch.int64,
(torch.uint8, torch.int8): torch.int16,
(torch.uint8, torch.int16): torch.int16,
(torch.uint8, torch.int32): torch.int32,
(torch.uint8, torch.int64): torch.int64,
# floats
(torch.float32, torch.float32): torch.float32,
(torch.float32, torch.float64): torch.float64,
(torch.float64, torch.float32): torch.float64,
(torch.float64, torch.float64): torch.float64,
# complexes
(torch.complex64, torch.complex64): torch.complex64,
(torch.complex64, torch.complex128): torch.complex128,
(torch.complex128, torch.complex64): torch.complex128,
(torch.complex128, torch.complex128): torch.complex128,
# Mixed float and complex
(torch.float32, torch.complex64): torch.complex64,
(torch.float32, torch.complex128): torch.complex128,
(torch.float64, torch.complex64): torch.complex128,
(torch.float64, torch.complex128): torch.complex128,
}
def _two_arg(f):
@_wraps(f)
def _f(x1, x2, /, **kwargs):
x1, x2 = _fix_promotion(x1, x2)
return f(x1, x2, **kwargs)
if _f.__doc__ is None:
_f.__doc__ = f"""\
Array API compatibility wrapper for torch.{f.__name__}.
See the corresponding PyTorch documentation and/or the array API specification
for more details.
"""
return _f
def _fix_promotion(x1, x2, only_scalar=True):
if not isinstance(x1, torch.Tensor) or not isinstance(x2, torch.Tensor):
return x1, x2
if x1.dtype not in _array_api_dtypes or x2.dtype not in _array_api_dtypes:
return x1, x2
# If an argument is 0-D pytorch downcasts the other argument
if not only_scalar or x1.shape == ():
dtype = result_type(x1, x2)
x2 = x2.to(dtype)
if not only_scalar or x2.shape == ():
dtype = result_type(x1, x2)
x1 = x1.to(dtype)
return x1, x2
def result_type(*arrays_and_dtypes: Union[array, Dtype]) -> Dtype:
if len(arrays_and_dtypes) == 0:
raise TypeError("At least one array or dtype must be provided")
if len(arrays_and_dtypes) == 1:
x = arrays_and_dtypes[0]
if isinstance(x, torch.dtype):
return x
return x.dtype
if len(arrays_and_dtypes) > 2:
return result_type(arrays_and_dtypes[0], result_type(*arrays_and_dtypes[1:]))
x, y = arrays_and_dtypes
xdt = x.dtype if not isinstance(x, torch.dtype) else x
ydt = y.dtype if not isinstance(y, torch.dtype) else y
if (xdt, ydt) in _promotion_table:
return _promotion_table[xdt, ydt]
# This doesn't result_type(dtype, dtype) for non-array API dtypes
# because torch.result_type only accepts tensors. This does however, allow
# cross-kind promotion.
x = torch.tensor([], dtype=x) if isinstance(x, torch.dtype) else x
y = torch.tensor([], dtype=y) if isinstance(y, torch.dtype) else y
return torch.result_type(x, y)
def can_cast(from_: Union[Dtype, array], to: Dtype, /) -> bool:
if not isinstance(from_, torch.dtype):
from_ = from_.dtype
return torch.can_cast(from_, to)
# Basic renames
bitwise_invert = torch.bitwise_not
newaxis = None
# Two-arg elementwise functions
# These require a wrapper to do the correct type promotion on 0-D tensors
add = _two_arg(torch.add)
atan2 = _two_arg(torch.atan2)
bitwise_and = _two_arg(torch.bitwise_and)
bitwise_left_shift = _two_arg(torch.bitwise_left_shift)
bitwise_or = _two_arg(torch.bitwise_or)
bitwise_right_shift = _two_arg(torch.bitwise_right_shift)
bitwise_xor = _two_arg(torch.bitwise_xor)
divide = _two_arg(torch.divide)
# Also a rename. torch.equal does not broadcast
equal = _two_arg(torch.eq)
floor_divide = _two_arg(torch.floor_divide)
greater = _two_arg(torch.greater)
greater_equal = _two_arg(torch.greater_equal)
less = _two_arg(torch.less)
less_equal = _two_arg(torch.less_equal)
logaddexp = _two_arg(torch.logaddexp)
# logical functions are not included here because they only accept bool in the
# spec, so type promotion is irrelevant.
multiply = _two_arg(torch.multiply)
not_equal = _two_arg(torch.not_equal)
pow = _two_arg(torch.pow)
remainder = _two_arg(torch.remainder)
subtract = _two_arg(torch.subtract)
# These wrappers are mostly based on the fact that pytorch uses 'dim' instead
# of 'axis'.
# torch.min and torch.max return a tuple and don't support multiple axes https://github.com/pytorch/pytorch/issues/58745
def max(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
# https://github.com/pytorch/pytorch/issues/29137
if axis == ():
return torch.clone(x)
return torch.amax(x, axis, keepdims=keepdims)
def min(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keepdims: bool = False) -> array:
# https://github.com/pytorch/pytorch/issues/29137
if axis == ():
return torch.clone(x)
return torch.amin(x, axis, keepdims=keepdims)
# torch.sort also returns a tuple
# https://github.com/pytorch/pytorch/issues/70921
def sort(x: array, /, *, axis: int = -1, descending: bool = False, stable: bool = True, **kwargs) -> array:
return torch.sort(x, dim=axis, descending=descending, stable=stable, **kwargs).values
def _normalize_axes(axis, ndim):
axes = []
if ndim == 0 and axis:
# Better error message in this case
raise IndexError(f"Dimension out of range: {axis[0]}")
lower, upper = -ndim, ndim - 1
for a in axis:
if a < lower or a > upper:
# Match torch error message (e.g., from sum())
raise IndexError(f"Dimension out of range (expected to be in range of [{lower}, {upper}], but got {a}")
if a < 0:
a = a + ndim
if a in axes:
# Use IndexError instead of RuntimeError, and "axis" instead of "dim"
raise IndexError(f"Axis {a} appears multiple times in the list of axes")
axes.append(a)
return sorted(axes)
def _axis_none_keepdims(x, ndim, keepdims):
# Apply keepdims when axis=None
# (https://github.com/pytorch/pytorch/issues/71209)
# Note that this is only valid for the axis=None case.
if keepdims:
for i in range(ndim):
x = torch.unsqueeze(x, 0)
return x
def _reduce_multiple_axes(f, x, axis, keepdims=False, **kwargs):
# Some reductions don't support multiple axes
# (https://github.com/pytorch/pytorch/issues/56586).
axes = _normalize_axes(axis, x.ndim)
for a in reversed(axes):
x = torch.movedim(x, a, -1)
x = torch.flatten(x, -len(axes))
out = f(x, -1, **kwargs)
if keepdims:
for a in axes:
out = torch.unsqueeze(out, a)
return out
def prod(x: array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
dtype: Optional[Dtype] = None,
keepdims: bool = False,
**kwargs) -> array:
x = torch.asarray(x)
ndim = x.ndim
# https://github.com/pytorch/pytorch/issues/29137. Separate from the logic
# below because it still needs to upcast.
if axis == ():
if dtype is None:
# We can't upcast uint8 according to the spec because there is no
# torch.uint64, so at least upcast to int64 which is what sum does
# when axis=None.
if x.dtype in [torch.int8, torch.int16, torch.int32, torch.uint8]:
return x.to(torch.int64)
return x.clone()
return x.to(dtype)
# torch.prod doesn't support multiple axes
# (https://github.com/pytorch/pytorch/issues/56586).
if isinstance(axis, tuple):
return _reduce_multiple_axes(torch.prod, x, axis, keepdims=keepdims, dtype=dtype, **kwargs)
if axis is None:
# torch doesn't support keepdims with axis=None
# (https://github.com/pytorch/pytorch/issues/71209)
res = torch.prod(x, dtype=dtype, **kwargs)
res = _axis_none_keepdims(res, ndim, keepdims)
return res
return torch.prod(x, axis, dtype=dtype, keepdims=keepdims, **kwargs)
def sum(x: array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
dtype: Optional[Dtype] = None,
keepdims: bool = False,
**kwargs) -> array:
x = torch.asarray(x)
ndim = x.ndim
# https://github.com/pytorch/pytorch/issues/29137.
# Make sure it upcasts.
if axis == ():
if dtype is None:
# We can't upcast uint8 according to the spec because there is no
# torch.uint64, so at least upcast to int64 which is what sum does
# when axis=None.
if x.dtype in [torch.int8, torch.int16, torch.int32, torch.uint8]:
return x.to(torch.int64)
return x.clone()
return x.to(dtype)
if axis is None:
# torch doesn't support keepdims with axis=None
# (https://github.com/pytorch/pytorch/issues/71209)
res = torch.sum(x, dtype=dtype, **kwargs)
res = _axis_none_keepdims(res, ndim, keepdims)
return res
return torch.sum(x, axis, dtype=dtype, keepdims=keepdims, **kwargs)
def any(x: array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
**kwargs) -> array:
x = torch.asarray(x)
ndim = x.ndim
if axis == ():
return x.to(torch.bool)
# torch.any doesn't support multiple axes
# (https://github.com/pytorch/pytorch/issues/56586).
if isinstance(axis, tuple):
res = _reduce_multiple_axes(torch.any, x, axis, keepdims=keepdims, **kwargs)
return res.to(torch.bool)
if axis is None:
# torch doesn't support keepdims with axis=None
# (https://github.com/pytorch/pytorch/issues/71209)
res = torch.any(x, **kwargs)
res = _axis_none_keepdims(res, ndim, keepdims)
return res.to(torch.bool)
# torch.any doesn't return bool for uint8
return torch.any(x, axis, keepdims=keepdims).to(torch.bool)
def all(x: array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
**kwargs) -> array:
x = torch.asarray(x)
ndim = x.ndim
if axis == ():
return x.to(torch.bool)
# torch.all doesn't support multiple axes
# (https://github.com/pytorch/pytorch/issues/56586).
if isinstance(axis, tuple):
res = _reduce_multiple_axes(torch.all, x, axis, keepdims=keepdims, **kwargs)
return res.to(torch.bool)
if axis is None:
# torch doesn't support keepdims with axis=None
# (https://github.com/pytorch/pytorch/issues/71209)
res = torch.all(x, **kwargs)
res = _axis_none_keepdims(res, ndim, keepdims)
return res.to(torch.bool)
# torch.all doesn't return bool for uint8
return torch.all(x, axis, keepdims=keepdims).to(torch.bool)
def mean(x: array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
keepdims: bool = False,
**kwargs) -> array:
# https://github.com/pytorch/pytorch/issues/29137
if axis == ():
return torch.clone(x)
if axis is None:
# torch doesn't support keepdims with axis=None
# (https://github.com/pytorch/pytorch/issues/71209)
res = torch.mean(x, **kwargs)
res = _axis_none_keepdims(res, x.ndim, keepdims)
return res
return torch.mean(x, axis, keepdims=keepdims, **kwargs)
def std(x: array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0,
keepdims: bool = False,
**kwargs) -> array:
# Note, float correction is not supported
# https://github.com/pytorch/pytorch/issues/61492. We don't try to
# implement it here for now.
if isinstance(correction, float):
_correction = int(correction)
if correction != _correction:
raise NotImplementedError("float correction in torch std() is not yet supported")
else:
_correction = correction
# https://github.com/pytorch/pytorch/issues/29137
if axis == ():
return torch.zeros_like(x)
if isinstance(axis, int):
axis = (axis,)
if axis is None:
# torch doesn't support keepdims with axis=None
# (https://github.com/pytorch/pytorch/issues/71209)
res = torch.std(x, tuple(range(x.ndim)), correction=_correction, **kwargs)
res = _axis_none_keepdims(res, x.ndim, keepdims)
return res
return torch.std(x, axis, correction=_correction, keepdims=keepdims, **kwargs)
def var(x: array,
/,
*,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
correction: Union[int, float] = 0.0,
keepdims: bool = False,
**kwargs) -> array:
# Note, float correction is not supported
# https://github.com/pytorch/pytorch/issues/61492. We don't try to
# implement it here for now.
# if isinstance(correction, float):
# correction = int(correction)
# https://github.com/pytorch/pytorch/issues/29137
if axis == ():
return torch.zeros_like(x)
if isinstance(axis, int):
axis = (axis,)
if axis is None:
# torch doesn't support keepdims with axis=None
# (https://github.com/pytorch/pytorch/issues/71209)
res = torch.var(x, tuple(range(x.ndim)), correction=correction, **kwargs)
res = _axis_none_keepdims(res, x.ndim, keepdims)
return res
return torch.var(x, axis, correction=correction, keepdims=keepdims, **kwargs)
# torch.concat doesn't support dim=None
# https://github.com/pytorch/pytorch/issues/70925
def concat(arrays: Union[Tuple[array, ...], List[array]],
/,
*,
axis: Optional[int] = 0,
**kwargs) -> array:
if axis is None:
arrays = tuple(ar.flatten() for ar in arrays)
axis = 0
return torch.concat(arrays, axis, **kwargs)
# torch.squeeze only accepts int dim and doesn't require it
# https://github.com/pytorch/pytorch/issues/70924. Support for tuple dim was
# added at https://github.com/pytorch/pytorch/pull/89017.
def squeeze(x: array, /, axis: Union[int, Tuple[int, ...]]) -> array:
if isinstance(axis, int):
axis = (axis,)
for a in axis:
if x.shape[a] != 1:
raise ValueError("squeezed dimensions must be equal to 1")
axes = _normalize_axes(axis, x.ndim)
# Remove this once pytorch 1.14 is released with the above PR #89017.
sequence = [a - i for i, a in enumerate(axes)]
for a in sequence:
x = torch.squeeze(x, a)
return x
# torch.broadcast_to uses size instead of shape
def broadcast_to(x: array, /, shape: Tuple[int, ...], **kwargs) -> array:
return torch.broadcast_to(x, shape, **kwargs)
# torch.permute uses dims instead of axes
def permute_dims(x: array, /, axes: Tuple[int, ...]) -> array:
return torch.permute(x, axes)
# The axis parameter doesn't work for flip() and roll()
# https://github.com/pytorch/pytorch/issues/71210. Also torch.flip() doesn't
# accept axis=None
def flip(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, **kwargs) -> array:
if axis is None:
axis = tuple(range(x.ndim))
# torch.flip doesn't accept dim as an int but the method does
# https://github.com/pytorch/pytorch/issues/18095
return x.flip(axis, **kwargs)
def roll(x: array, /, shift: Union[int, Tuple[int, ...]], *, axis: Optional[Union[int, Tuple[int, ...]]] = None, **kwargs) -> array:
return torch.roll(x, shift, axis, **kwargs)
def nonzero(x: array, /, **kwargs) -> Tuple[array, ...]:
if x.ndim == 0:
raise ValueError("nonzero() does not support zero-dimensional arrays")
return torch.nonzero(x, as_tuple=True, **kwargs)
def where(condition: array, x1: array, x2: array, /) -> array:
x1, x2 = _fix_promotion(x1, x2)
return torch.where(condition, x1, x2)
# torch.reshape doesn't have the copy keyword
def reshape(x: array,
/,
shape: Tuple[int, ...],
copy: Optional[bool] = None,
**kwargs) -> array:
if copy is not None:
raise NotImplementedError("torch.reshape doesn't yet support the copy keyword")
return torch.reshape(x, shape, **kwargs)
# torch.arange doesn't support returning empty arrays
# (https://github.com/pytorch/pytorch/issues/70915), and doesn't support some
# keyword argument combinations
# (https://github.com/pytorch/pytorch/issues/70914)
def arange(start: Union[int, float],
/,
stop: Optional[Union[int, float]] = None,
step: Union[int, float] = 1,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs) -> array:
if stop is None:
start, stop = 0, start
if step > 0 and stop <= start or step < 0 and stop >= start:
if dtype is None:
if _builtin_all(isinstance(i, int) for i in [start, stop, step]):
dtype = torch.int64
else:
dtype = torch.float32
return torch.empty(0, dtype=dtype, device=device, **kwargs)
return torch.arange(start, stop, step, dtype=dtype, device=device, **kwargs)
# torch.eye does not accept None as a default for the second argument and
# doesn't support off-diagonals (https://github.com/pytorch/pytorch/issues/70910)
def eye(n_rows: int,
n_cols: Optional[int] = None,
/,
*,
k: int = 0,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs) -> array:
if n_cols is None:
n_cols = n_rows
z = torch.zeros(n_rows, n_cols, dtype=dtype, device=device, **kwargs)
if abs(k) <= n_rows + n_cols:
z.diagonal(k).fill_(1)
return z
# torch.linspace doesn't have the endpoint parameter
def linspace(start: Union[int, float],
stop: Union[int, float],
/,
num: int,
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
endpoint: bool = True,
**kwargs) -> array:
if not endpoint:
return torch.linspace(start, stop, num+1, dtype=dtype, device=device, **kwargs)[:-1]
return torch.linspace(start, stop, num, dtype=dtype, device=device, **kwargs)
# torch.full does not accept an int size
# https://github.com/pytorch/pytorch/issues/70906
def full(shape: Union[int, Tuple[int, ...]],
fill_value: Union[bool, int, float, complex],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs) -> array:
if isinstance(shape, int):
shape = (shape,)
return torch.full(shape, fill_value, dtype=dtype, device=device, **kwargs)
# ones, zeros, and empty do not accept shape as a keyword argument
def ones(shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs) -> array:
return torch.ones(shape, dtype=dtype, device=device, **kwargs)
def zeros(shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs) -> array:
return torch.zeros(shape, dtype=dtype, device=device, **kwargs)
def empty(shape: Union[int, Tuple[int, ...]],
*,
dtype: Optional[Dtype] = None,
device: Optional[Device] = None,
**kwargs) -> array:
return torch.empty(shape, dtype=dtype, device=device, **kwargs)
# tril and triu do not call the keyword argument k
def tril(x: array, /, *, k: int = 0) -> array:
return torch.tril(x, k)
def triu(x: array, /, *, k: int = 0) -> array:
return torch.triu(x, k)
# Functions that aren't in torch https://github.com/pytorch/pytorch/issues/58742
def expand_dims(x: array, /, *, axis: int = 0) -> array:
return torch.unsqueeze(x, axis)
def astype(x: array, dtype: Dtype, /, *, copy: bool = True) -> array:
return x.to(dtype, copy=copy)
def broadcast_arrays(*arrays: array) -> List[array]:
shape = torch.broadcast_shapes(*[a.shape for a in arrays])
return [torch.broadcast_to(a, shape) for a in arrays]
# Note that these named tuples aren't actually part of the standard namespace,
# but I don't see any issue with exporting the names here regardless.
from ..common._aliases import (UniqueAllResult, UniqueCountsResult,
UniqueInverseResult)
# https://github.com/pytorch/pytorch/issues/70920
def unique_all(x: array) -> UniqueAllResult:
# torch.unique doesn't support returning indices.
# https://github.com/pytorch/pytorch/issues/36748. The workaround
# suggested in that issue doesn't actually function correctly (it relies
# on non-deterministic behavior of scatter()).
raise NotImplementedError("unique_all() not yet implemented for pytorch (see https://github.com/pytorch/pytorch/issues/36748)")
# values, inverse_indices, counts = torch.unique(x, return_counts=True, return_inverse=True)
# # torch.unique incorrectly gives a 0 count for nan values.
# # https://github.com/pytorch/pytorch/issues/94106
# counts[torch.isnan(values)] = 1
# return UniqueAllResult(values, indices, inverse_indices, counts)
def unique_counts(x: array) -> UniqueCountsResult:
values, counts = torch.unique(x, return_counts=True)
# torch.unique incorrectly gives a 0 count for nan values.
# https://github.com/pytorch/pytorch/issues/94106
counts[torch.isnan(values)] = 1
return UniqueCountsResult(values, counts)
def unique_inverse(x: array) -> UniqueInverseResult:
values, inverse = torch.unique(x, return_inverse=True)
return UniqueInverseResult(values, inverse)
def unique_values(x: array) -> array:
return torch.unique(x)
def matmul(x1: array, x2: array, /, **kwargs) -> array:
# torch.matmul doesn't type promote (but differently from _fix_promotion)
x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
return torch.matmul(x1, x2, **kwargs)
matrix_transpose = get_xp(torch)(_aliases_matrix_transpose)
_vecdot = get_xp(torch)(_aliases_vecdot)
def vecdot(x1: array, x2: array, /, *, axis: int = -1) -> array:
x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
return _vecdot(x1, x2, axis=axis)
# torch.tensordot uses dims instead of axes
def tensordot(x1: array, x2: array, /, *, axes: Union[int, Tuple[Sequence[int], Sequence[int]]] = 2, **kwargs) -> array:
# Note: torch.tensordot fails with integer dtypes when there is only 1
# element in the axis (https://github.com/pytorch/pytorch/issues/84530).
x1, x2 = _fix_promotion(x1, x2, only_scalar=False)
return torch.tensordot(x1, x2, dims=axes, **kwargs)
def isdtype(
dtype: Dtype, kind: Union[Dtype, str, Tuple[Union[Dtype, str], ...]],
*, _tuple=True, # Disallow nested tuples
) -> bool:
"""
Returns a boolean indicating whether a provided dtype is of a specified data type ``kind``.
Note that outside of this function, this compat library does not yet fully
support complex numbers.
See
https://data-apis.org/array-api/latest/API_specification/generated/array_api.isdtype.html
for more details
"""
if isinstance(kind, tuple) and _tuple:
return _builtin_any(isdtype(dtype, k, _tuple=False) for k in kind)
elif isinstance(kind, str):
if kind == 'bool':
return dtype == torch.bool
elif kind == 'signed integer':
return dtype in _int_dtypes and dtype.is_signed
elif kind == 'unsigned integer':
return dtype in _int_dtypes and not dtype.is_signed
elif kind == 'integral':
return dtype in _int_dtypes
elif kind == 'real floating':
return dtype.is_floating_point
elif kind == 'complex floating':
return dtype.is_complex
elif kind == 'numeric':
return isdtype(dtype, ('integral', 'real floating', 'complex floating'))
else:
raise ValueError(f"Unrecognized data type kind: {kind!r}")
else:
return dtype == kind
def take(x: array, indices: array, /, *, axis: Optional[int] = None, **kwargs) -> array:
if axis is None:
if x.ndim != 1:
raise ValueError("axis must be specified when ndim > 1")
axis = 0
return torch.index_select(x, axis, indices, **kwargs)
top_k = torch.topk
__all__ = ['result_type', 'can_cast', 'permute_dims', 'bitwise_invert',
'newaxis', 'add', 'atan2', 'bitwise_and', 'bitwise_left_shift',
'bitwise_or', 'bitwise_right_shift', 'bitwise_xor', 'divide',
'equal', 'floor_divide', 'greater', 'greater_equal', 'less',
'less_equal', 'logaddexp', 'multiply', 'not_equal', 'pow',
'remainder', 'subtract', 'max', 'min', 'sort', 'prod', 'sum',
'any', 'all', 'mean', 'std', 'var', 'concat', 'squeeze',
'broadcast_to', 'flip', 'roll', 'nonzero', 'where', 'reshape',
'arange', 'eye', 'linspace', 'full', 'ones', 'zeros', 'empty',
'tril', 'triu', 'expand_dims', 'astype', 'broadcast_arrays',
'UniqueAllResult', 'UniqueCountsResult', 'UniqueInverseResult',
'unique_all', 'unique_counts', 'unique_inverse', 'unique_values',
'matmul', 'matrix_transpose', 'vecdot', 'tensordot', 'isdtype',
'take', 'top_k']
_all_ignore = ['torch', 'get_xp']