77"""
88from __future__ import annotations
99
10+ import operator
1011from typing import TYPE_CHECKING
1112
1213if TYPE_CHECKING :
13- from typing import Optional , Union , Any
14+ from typing import Callable , Literal , Optional , Union , Any
1415 from ._typing import Array , Device
1516
1617import sys
@@ -91,7 +92,7 @@ def is_cupy_array(x):
9192 import cupy as cp
9293
9394 # TODO: Should we reject ndarray subclasses?
94- return isinstance (x , ( cp .ndarray , cp . generic ) )
95+ return isinstance (x , cp .ndarray )
9596
9697def is_torch_array (x ):
9798 """
@@ -787,6 +788,7 @@ def to_device(x: Array, device: Device, /, *, stream: Optional[Union[int, Any]]
787788 return x
788789 return x .to_device (device , stream = stream )
789790
791+
790792def size (x ):
791793 """
792794 Return the total number of elements of x.
@@ -801,6 +803,261 @@ def size(x):
801803 return None
802804 return math .prod (x .shape )
803805
806+
807+ def is_writeable_array (x ) -> bool :
808+ """
809+ Return False if x.__setitem__ is expected to raise; True otherwise
810+ """
811+ if is_numpy_array (x ):
812+ return x .flags .writeable
813+ if is_jax_array (x ) or is_pydata_sparse_array (x ):
814+ return False
815+ return True
816+
817+
818+ def _is_fancy_index (idx ) -> bool :
819+ if not isinstance (idx , tuple ):
820+ idx = (idx ,)
821+ return any (
822+ isinstance (i , (list , tuple )) or is_array_api_obj (i )
823+ for i in idx
824+ )
825+
826+
827+ _undef = object ()
828+
829+
830+ class at :
831+ """
832+ Update operations for read-only arrays.
833+
834+ This implements ``jax.numpy.ndarray.at`` for all backends.
835+ Writeable arrays may be updated in place; you should not rely on it.
836+
837+ Keyword arguments (e.g. ``indices_are_sorted``) are passed to JAX and are
838+ quietly ignored for backends that don't support them.
839+
840+ Additionally, this introduces support for the `copy` keyword for all backends:
841+
842+ None
843+ x *may* be modified in place if it is possible and beneficial
844+ for performance. You should not use x after calling this function.
845+ True
846+ Ensure that the inputs are not modified. This is the default.
847+ False
848+ Raise ValueError if a copy cannot be avoided.
849+
850+ Examples
851+ --------
852+ Given either of these equivalent expressions::
853+
854+ x = at(x)[1].add(2, copy=None)
855+ x = at(x, 1).add(2, copy=None)
856+
857+ If x is a JAX array, they are the same as::
858+
859+ x = x.at[1].add(2)
860+
861+ If x is a read-only numpy array, they are the same as::
862+
863+ x = x.copy()
864+ x[1] += 2
865+
866+ Otherwise, they are the same as::
867+
868+ x[1] += 2
869+
870+ Warning
871+ -------
872+ When you use copy=None, you should always immediately overwrite
873+ the parameter array::
874+
875+ x = at(x, 0).set(2, copy=None)
876+
877+ The anti-pattern below must be avoided, as it will result in different behaviour
878+ on read-only versus writeable arrays:
879+
880+ x = xp.asarray([0, 0, 0])
881+ y = at(x, 0).set(2, copy=None)
882+ z = at(x, 1).set(3, copy=None)
883+
884+ In the above example, y == [2, 0, 0] and z == [0, 3, 0] when x is read-only,
885+ whereas y == z == [2, 3, 0] when x is writeable!
886+
887+ Caveat
888+ ------
889+ The behaviour of methods other than `get()` when the index is an array of
890+ integers which contains multiple occurrences of the same index is undefined.
891+
892+ **Undefined behaviour:** ``at(x, [0, 0]).set(2)``
893+
894+ See Also
895+ --------
896+ https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.ndarray.at.html
897+ """
898+
899+ __slots__ = ("x" , "idx" )
900+
901+ def __init__ (self , x , idx = _undef ):
902+ self .x = x
903+ self .idx = idx
904+
905+ def __getitem__ (self , idx ):
906+ """
907+ Allow for the alternate syntax ``at(x)[start:stop:step]``,
908+ which looks prettier than ``at(x, slice(start, stop, step))``
909+ and feels more intuitive coming from the JAX documentation.
910+ """
911+ if self .idx is not _undef :
912+ raise ValueError ("Index has already been set" )
913+ self .idx = idx
914+ return self
915+
916+ def _common (
917+ self ,
918+ at_op : str ,
919+ y = _undef ,
920+ copy : bool | None | Literal ["_force_false" ] = True ,
921+ ** kwargs ,
922+ ):
923+ """Perform common prepocessing.
924+
925+ Returns
926+ -------
927+ If the operation can be resolved by at[], (return value, None)
928+ Otherwise, (None, preprocessed x)
929+ """
930+ if self .idx is _undef :
931+ raise TypeError (
932+ "Index has not been set.\n "
933+ "Usage: either\n "
934+ " at(x, idx).set(value)\n "
935+ "or\n "
936+ " at(x)[idx].set(value)\n "
937+ "(same for all other methods)."
938+ )
939+
940+ x = self .x
941+
942+ if copy is False :
943+ if not is_writeable_array (x ) or is_dask_array (x ):
944+ raise ValueError ("Cannot modify parameter in place" )
945+ elif copy is None :
946+ copy = not is_writeable_array (x )
947+ elif copy == "_force_false" :
948+ copy = False
949+ elif copy is not True :
950+ raise ValueError (f"Invalid value for copy: { copy !r} " )
951+
952+ if is_jax_array (x ):
953+ # Use JAX's at[]
954+ at_ = x .at [self .idx ]
955+ args = (y ,) if y is not _undef else ()
956+ return getattr (at_ , at_op )(* args , ** kwargs ), None
957+
958+ # Emulate at[] behaviour for non-JAX arrays
959+ if copy :
960+ # FIXME We blindly expect the output of x.copy() to be always writeable.
961+ # This holds true for read-only numpy arrays, but not necessarily for
962+ # other backends.
963+ xp = get_namespace (x )
964+ x = xp .asarray (x , copy = True )
965+
966+ return None , x
967+
968+ def get (self , copy : bool | None = True , ** kwargs ):
969+ """
970+ Return x[idx]. In addition to plain __getitem__, this allows ensuring
971+ that the output is (not) a copy and kwargs are passed to the backend.
972+ """
973+ # __getitem__ with a fancy index always returns a copy.
974+ # Avoid an unnecessary double copy.
975+ # If copy is forced to False, raise.
976+ if _is_fancy_index (self .idx ):
977+ if copy is False :
978+ raise ValueError (
979+ "Indexing a numpy array with a fancy index always "
980+ "results in a copy"
981+ )
982+ # Skip copy inside _common, even if array is not writeable
983+ copy = "_force_false" # type: ignore
984+
985+ res , x = self ._common ("get" , copy = copy , ** kwargs )
986+ if res is not None :
987+ return res
988+ return x [self .idx ]
989+
990+ def set (self , y , / , ** kwargs ):
991+ """x[idx] = y"""
992+ res , x = self ._common ("set" , y , ** kwargs )
993+ if res is not None :
994+ return res
995+ x [self .idx ] = y
996+ return x
997+
998+ def apply (self , ufunc , / , ** kwargs ):
999+ """ufunc.at(x, idx)"""
1000+ if is_cupy_array (self .x ) or is_torch_array (self .x ) or is_dask_array (self .x ):
1001+ # ufunc.at not implemented
1002+ return self .set (ufunc (self .x [self .idx ]), ** kwargs )
1003+
1004+ res , x = self ._common ("apply" , ufunc , ** kwargs )
1005+ if res is not None :
1006+ return res
1007+ ufunc .at (x , self .idx )
1008+ return x
1009+
1010+ def _iop (
1011+ self , at_op : str , elwise_op : Callable [[Array , Array ], Array ], y : Array , ** kwargs
1012+ ):
1013+ """x[idx] += y or equivalent in-place operation on a subset of x
1014+
1015+ which is the same as saying
1016+ x[idx] = x[idx] + y
1017+ Note that this is not the same as
1018+ operator.iadd(x[idx], y)
1019+ Consider for example when x is a numpy array and idx is a fancy index, which
1020+ triggers a deep copy on __getitem__.
1021+ """
1022+ res , x = self ._common (at_op , y , ** kwargs )
1023+ if res is not None :
1024+ return res
1025+ x [self .idx ] = elwise_op (x [self .idx ], y )
1026+ return x
1027+
1028+ def add (self , y , / , ** kwargs ):
1029+ """x[idx] += y"""
1030+ return self ._iop ("add" , operator .add , y , ** kwargs )
1031+
1032+ def subtract (self , y , / , ** kwargs ):
1033+ """x[idx] -= y"""
1034+ return self ._iop ("subtract" , operator .sub , y , ** kwargs )
1035+
1036+ def multiply (self , y , / , ** kwargs ):
1037+ """x[idx] *= y"""
1038+ return self ._iop ("multiply" , operator .mul , y , ** kwargs )
1039+
1040+ def divide (self , y , / , ** kwargs ):
1041+ """x[idx] /= y"""
1042+ return self ._iop ("divide" , operator .truediv , y , ** kwargs )
1043+
1044+ def power (self , y , / , ** kwargs ):
1045+ """x[idx] **= y"""
1046+ return self ._iop ("power" , operator .pow , y , ** kwargs )
1047+
1048+ def min (self , y , / , ** kwargs ):
1049+ """x[idx] = minimum(x[idx], y)"""
1050+ import numpy as np
1051+
1052+ return self ._iop ("min" , np .minimum , y , ** kwargs )
1053+
1054+ def max (self , y , / , ** kwargs ):
1055+ """x[idx] = maximum(x[idx], y)"""
1056+ import numpy as np
1057+
1058+ return self ._iop ("max" , np .maximum , y , ** kwargs )
1059+
1060+
8041061__all__ = [
8051062 "array_namespace" ,
8061063 "device" ,
@@ -821,8 +1078,10 @@ def size(x):
8211078 "is_ndonnx_namespace" ,
8221079 "is_pydata_sparse_array" ,
8231080 "is_pydata_sparse_namespace" ,
1081+ "is_writeable_array" ,
8241082 "size" ,
8251083 "to_device" ,
1084+ "at" ,
8261085]
8271086
828- _all_ignore = ['sys ' , 'math' , 'inspect ' , 'warnings' ]
1087+ _all_ignore = ['inspect ' , 'math' , 'operator ' , 'warnings' , 'sys ' ]
0 commit comments