|
| 1 | +""" |
| 2 | +Array API Inspection namespace |
| 3 | +
|
| 4 | +This is the namespace for inspection functions as defined by the array API |
| 5 | +standard. See |
| 6 | +https://data-apis.org/array-api/latest/API_specification/inspection.html for |
| 7 | +more details. |
| 8 | +
|
| 9 | +""" |
| 10 | +from torch import ( |
| 11 | + asarray, |
| 12 | + get_default_dtype, |
| 13 | + device, |
| 14 | + empty, |
| 15 | + bool, |
| 16 | + int8, |
| 17 | + int16, |
| 18 | + int32, |
| 19 | + int64, |
| 20 | + uint8, |
| 21 | + uint16, |
| 22 | + uint32, |
| 23 | + uint64, |
| 24 | + float32, |
| 25 | + float64, |
| 26 | + complex64, |
| 27 | + complex128, |
| 28 | +) |
| 29 | + |
| 30 | +from functools import cache |
| 31 | + |
| 32 | +class __array_namespace_info__: |
| 33 | + """ |
| 34 | + Get the array API inspection namespace for PyTorch. |
| 35 | +
|
| 36 | + The array API inspection namespace defines the following functions: |
| 37 | +
|
| 38 | + - capabilities() |
| 39 | + - default_device() |
| 40 | + - default_dtypes() |
| 41 | + - dtypes() |
| 42 | + - devices() |
| 43 | +
|
| 44 | + See |
| 45 | + https://data-apis.org/array-api/latest/API_specification/inspection.html |
| 46 | + for more details. |
| 47 | +
|
| 48 | + Returns |
| 49 | + ------- |
| 50 | + info : ModuleType |
| 51 | + The array API inspection namespace for PyTorch. |
| 52 | +
|
| 53 | + Examples |
| 54 | + -------- |
| 55 | + >>> info = np.__array_namespace_info__() |
| 56 | + >>> info.default_dtypes() |
| 57 | + {'real floating': numpy.float64, |
| 58 | + 'complex floating': numpy.complex128, |
| 59 | + 'integral': numpy.int64, |
| 60 | + 'indexing': numpy.int64} |
| 61 | +
|
| 62 | + """ |
| 63 | + |
| 64 | + __module__ = 'torch' |
| 65 | + |
| 66 | + def capabilities(self): |
| 67 | + """ |
| 68 | + Return a dictionary of array API library capabilities. |
| 69 | +
|
| 70 | + The resulting dictionary has the following keys: |
| 71 | +
|
| 72 | + - **"boolean indexing"**: boolean indicating whether an array library |
| 73 | + supports boolean indexing. Always ``True`` for PyTorch. |
| 74 | +
|
| 75 | + - **"data-dependent shapes"**: boolean indicating whether an array |
| 76 | + library supports data-dependent output shapes. Always ``True`` for |
| 77 | + PyTorch. |
| 78 | +
|
| 79 | + See |
| 80 | + https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html |
| 81 | + for more details. |
| 82 | +
|
| 83 | + See Also |
| 84 | + -------- |
| 85 | + __array_namespace_info__.default_device, |
| 86 | + __array_namespace_info__.default_dtypes, |
| 87 | + __array_namespace_info__.dtypes, |
| 88 | + __array_namespace_info__.devices |
| 89 | +
|
| 90 | + Returns |
| 91 | + ------- |
| 92 | + capabilities : dict |
| 93 | + A dictionary of array API library capabilities. |
| 94 | +
|
| 95 | + Examples |
| 96 | + -------- |
| 97 | + >>> info = np.__array_namespace_info__() |
| 98 | + >>> info.capabilities() |
| 99 | + {'boolean indexing': True, |
| 100 | + 'data-dependent shapes': True} |
| 101 | +
|
| 102 | + """ |
| 103 | + return { |
| 104 | + "boolean indexing": True, |
| 105 | + "data-dependent shapes": True, |
| 106 | + # 'max rank' will be part of the 2024.12 standard |
| 107 | + # "max rank": 64, |
| 108 | + } |
| 109 | + |
| 110 | + def default_device(self): |
| 111 | + """ |
| 112 | + The default device used for new PyTorch arrays. |
| 113 | +
|
| 114 | + See Also |
| 115 | + -------- |
| 116 | + __array_namespace_info__.capabilities, |
| 117 | + __array_namespace_info__.default_dtypes, |
| 118 | + __array_namespace_info__.dtypes, |
| 119 | + __array_namespace_info__.devices |
| 120 | +
|
| 121 | + Returns |
| 122 | + ------- |
| 123 | + device : str |
| 124 | + The default device used for new PyTorch arrays. |
| 125 | +
|
| 126 | + Examples |
| 127 | + -------- |
| 128 | + >>> info = np.__array_namespace_info__() |
| 129 | + >>> info.default_device() |
| 130 | + 'cpu' |
| 131 | +
|
| 132 | + """ |
| 133 | + return device("cpu") |
| 134 | + |
| 135 | + def default_dtypes(self, *, device=None): |
| 136 | + """ |
| 137 | + The default data types used for new PyTorch arrays. |
| 138 | +
|
| 139 | + Parameters |
| 140 | + ---------- |
| 141 | + device : str, optional |
| 142 | + The device to get the default data types for. For PyTorch, only |
| 143 | + ``'cpu'`` is allowed. |
| 144 | +
|
| 145 | + Returns |
| 146 | + ------- |
| 147 | + dtypes : dict |
| 148 | + A dictionary describing the default data types used for new PyTorch |
| 149 | + arrays. |
| 150 | +
|
| 151 | + See Also |
| 152 | + -------- |
| 153 | + __array_namespace_info__.capabilities, |
| 154 | + __array_namespace_info__.default_device, |
| 155 | + __array_namespace_info__.dtypes, |
| 156 | + __array_namespace_info__.devices |
| 157 | +
|
| 158 | + Examples |
| 159 | + -------- |
| 160 | + >>> info = np.__array_namespace_info__() |
| 161 | + >>> info.default_dtypes() |
| 162 | + {'real floating': torch.float32, |
| 163 | + 'complex floating': torch.complex64, |
| 164 | + 'integral': torch.int64, |
| 165 | + 'indexing': torch.int64} |
| 166 | +
|
| 167 | + """ |
| 168 | + default_floating = get_default_dtype() |
| 169 | + default_complex = complex64 if default_floating == float32 else complex128 |
| 170 | + default_integral = asarray(0, device=device).dtype |
| 171 | + return { |
| 172 | + "real floating": default_floating, |
| 173 | + "complex floating": default_complex, |
| 174 | + "integral": default_integral, |
| 175 | + "indexing": default_integral, |
| 176 | + } |
| 177 | + |
| 178 | + @cache |
| 179 | + def dtypes(self, *, device=None, kind=None): |
| 180 | + """ |
| 181 | + The array API data types supported by PyTorch. |
| 182 | +
|
| 183 | + Note that this function only returns data types that are defined by |
| 184 | + the array API. |
| 185 | +
|
| 186 | + Parameters |
| 187 | + ---------- |
| 188 | + device : str, optional |
| 189 | + The device to get the data types for. |
| 190 | + kind : str or tuple of str, optional |
| 191 | + The kind of data types to return. If ``None``, all data types are |
| 192 | + returned. If a string, only data types of that kind are returned. |
| 193 | + If a tuple, a dictionary containing the union of the given kinds |
| 194 | + is returned. The following kinds are supported: |
| 195 | +
|
| 196 | + - ``'bool'``: boolean data types (i.e., ``bool``). |
| 197 | + - ``'signed integer'``: signed integer data types (i.e., ``int8``, |
| 198 | + ``int16``, ``int32``, ``int64``). |
| 199 | + - ``'unsigned integer'``: unsigned integer data types (i.e., |
| 200 | + ``uint8``, ``uint16``, ``uint32``, ``uint64``). |
| 201 | + - ``'integral'``: integer data types. Shorthand for ``('signed |
| 202 | + integer', 'unsigned integer')``. |
| 203 | + - ``'real floating'``: real-valued floating-point data types |
| 204 | + (i.e., ``float32``, ``float64``). |
| 205 | + - ``'complex floating'``: complex floating-point data types (i.e., |
| 206 | + ``complex64``, ``complex128``). |
| 207 | + - ``'numeric'``: numeric data types. Shorthand for ``('integral', |
| 208 | + 'real floating', 'complex floating')``. |
| 209 | +
|
| 210 | + Returns |
| 211 | + ------- |
| 212 | + dtypes : dict |
| 213 | + A dictionary mapping the names of data types to the corresponding |
| 214 | + PyTorch data types. |
| 215 | +
|
| 216 | + See Also |
| 217 | + -------- |
| 218 | + __array_namespace_info__.capabilities, |
| 219 | + __array_namespace_info__.default_device, |
| 220 | + __array_namespace_info__.default_dtypes, |
| 221 | + __array_namespace_info__.devices |
| 222 | +
|
| 223 | + Examples |
| 224 | + -------- |
| 225 | + >>> info = np.__array_namespace_info__() |
| 226 | + >>> info.dtypes(kind='signed integer') |
| 227 | + {'int8': numpy.int8, |
| 228 | + 'int16': numpy.int16, |
| 229 | + 'int32': numpy.int32, |
| 230 | + 'int64': numpy.int64} |
| 231 | +
|
| 232 | + """ |
| 233 | + res = self._dtypes(kind) |
| 234 | + for k, v in res.copy().items(): |
| 235 | + try: |
| 236 | + empty((0,), dtype=v, device=device) |
| 237 | + except: |
| 238 | + del res[k] |
| 239 | + return res |
| 240 | + |
| 241 | + def _dtypes(self, kind): |
| 242 | + if kind is None: |
| 243 | + return { |
| 244 | + "bool": bool, |
| 245 | + "int8": int8, |
| 246 | + "int16": int16, |
| 247 | + "int32": int32, |
| 248 | + "int64": int64, |
| 249 | + "uint8": uint8, |
| 250 | + "uint16": uint16, |
| 251 | + "uint32": uint32, |
| 252 | + "uint64": uint64, |
| 253 | + "float32": float32, |
| 254 | + "float64": float64, |
| 255 | + "complex64": complex64, |
| 256 | + "complex128": complex128, |
| 257 | + } |
| 258 | + if kind == "bool": |
| 259 | + return {"bool": bool} |
| 260 | + if kind == "signed integer": |
| 261 | + return { |
| 262 | + "int8": int8, |
| 263 | + "int16": int16, |
| 264 | + "int32": int32, |
| 265 | + "int64": int64, |
| 266 | + } |
| 267 | + if kind == "unsigned integer": |
| 268 | + return { |
| 269 | + "uint8": uint8, |
| 270 | + "uint16": uint16, |
| 271 | + "uint32": uint32, |
| 272 | + "uint64": uint64, |
| 273 | + } |
| 274 | + if kind == "integral": |
| 275 | + return { |
| 276 | + "int8": int8, |
| 277 | + "int16": int16, |
| 278 | + "int32": int32, |
| 279 | + "int64": int64, |
| 280 | + "uint8": uint8, |
| 281 | + "uint16": uint16, |
| 282 | + "uint32": uint32, |
| 283 | + "uint64": uint64, |
| 284 | + } |
| 285 | + if kind == "real floating": |
| 286 | + return { |
| 287 | + "float32": float32, |
| 288 | + "float64": float64, |
| 289 | + } |
| 290 | + if kind == "complex floating": |
| 291 | + return { |
| 292 | + "complex64": complex64, |
| 293 | + "complex128": complex128, |
| 294 | + } |
| 295 | + if kind == "numeric": |
| 296 | + return { |
| 297 | + "int8": int8, |
| 298 | + "int16": int16, |
| 299 | + "int32": int32, |
| 300 | + "int64": int64, |
| 301 | + "uint8": uint8, |
| 302 | + "uint16": uint16, |
| 303 | + "uint32": uint32, |
| 304 | + "uint64": uint64, |
| 305 | + "float32": float32, |
| 306 | + "float64": float64, |
| 307 | + "complex64": complex64, |
| 308 | + "complex128": complex128, |
| 309 | + } |
| 310 | + if isinstance(kind, tuple): |
| 311 | + res = {} |
| 312 | + for k in kind: |
| 313 | + res.update(self.dtypes(kind=k)) |
| 314 | + return res |
| 315 | + raise ValueError(f"unsupported kind: {kind!r}") |
| 316 | + |
| 317 | + @cache |
| 318 | + def devices(self): |
| 319 | + """ |
| 320 | + The devices supported by PyTorch. |
| 321 | +
|
| 322 | + Returns |
| 323 | + ------- |
| 324 | + devices : list of str |
| 325 | + The devices supported by PyTorch. |
| 326 | +
|
| 327 | + See Also |
| 328 | + -------- |
| 329 | + __array_namespace_info__.capabilities, |
| 330 | + __array_namespace_info__.default_device, |
| 331 | + __array_namespace_info__.default_dtypes, |
| 332 | + __array_namespace_info__.dtypes |
| 333 | +
|
| 334 | + Examples |
| 335 | + -------- |
| 336 | + >>> info = np.__array_namespace_info__() |
| 337 | + >>> info.devices() |
| 338 | + [device(type='cpu'), device(type='mps', index=0), device(type='meta')] |
| 339 | +
|
| 340 | + """ |
| 341 | + # Torch doesn't have a straightforward way to get the list of all |
| 342 | + # currently supported devices. To do this, we first parse the error |
| 343 | + # message of torch.device to get the list of all possible types of |
| 344 | + # device: |
| 345 | + try: |
| 346 | + device('notadevice') |
| 347 | + except RuntimeError as e: |
| 348 | + # The error message is something like: |
| 349 | + # "Expected one of cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone device type at start of device string: notadevice" |
| 350 | + devices_names = e.args[0].split('Expected one of ')[1].split(' device type')[0].split(', ') |
| 351 | + |
| 352 | + # Next we need to check for different indices for different devices. |
| 353 | + # device(device_name, index=index) doesn't actually check if the |
| 354 | + # device name or index is valid. We have to try to create a tensor |
| 355 | + # with it (which is why this function is cached). |
| 356 | + devices = [] |
| 357 | + for device_name in devices_names: |
| 358 | + i = 0 |
| 359 | + while True: |
| 360 | + try: |
| 361 | + a = empty((0,), device=device(device_name, index=i)) |
| 362 | + if a.device in devices: |
| 363 | + break |
| 364 | + devices.append(a.device) |
| 365 | + except: |
| 366 | + break |
| 367 | + i += 1 |
| 368 | + |
| 369 | + return devices |
0 commit comments