diff --git a/array_api_compat/common/_aliases.py b/array_api_compat/common/_aliases.py index 98b8e425..d7e8ef2d 100644 --- a/array_api_compat/common/_aliases.py +++ b/array_api_compat/common/_aliases.py @@ -12,7 +12,7 @@ from typing import NamedTuple import inspect -from ._helpers import array_namespace, _check_device, device, is_torch_array, is_cupy_namespace +from ._helpers import array_namespace, _check_device, device, is_cupy_namespace # These functions are modified from the NumPy versions. @@ -368,23 +368,23 @@ def _isscalar(a): if type(max) is int and max >= wrapped_xp.iinfo(x.dtype).max: max = None + dev = device(x) if out is None: - out = wrapped_xp.asarray(xp.broadcast_to(x, result_shape), - copy=True, device=device(x)) + out = wrapped_xp.empty(result_shape, dtype=x.dtype, device=dev) + out[()] = x + if min is not None: - if is_torch_array(x) and x.dtype == xp.float64 and _isscalar(min): - # Avoid loss of precision due to torch defaulting to float32 - min = wrapped_xp.asarray(min, dtype=xp.float64) - a = xp.broadcast_to(wrapped_xp.asarray(min, device=device(x)), result_shape) + a = wrapped_xp.asarray(min, dtype=x.dtype, device=dev) + a = xp.broadcast_to(a, result_shape) ia = (out < a) | xp.isnan(a) - # torch requires an explicit cast here - out[ia] = wrapped_xp.astype(a[ia], out.dtype) + out[ia] = a[ia] + if max is not None: - if is_torch_array(x) and x.dtype == xp.float64 and _isscalar(max): - max = wrapped_xp.asarray(max, dtype=xp.float64) - b = xp.broadcast_to(wrapped_xp.asarray(max, device=device(x)), result_shape) + b = wrapped_xp.asarray(max, dtype=x.dtype, device=dev) + b = xp.broadcast_to(b, result_shape) ib = (out > b) | xp.isnan(b) - out[ib] = wrapped_xp.astype(b[ib], out.dtype) + out[ib] = b[ib] + # Return a scalar for 0-D return out[()] diff --git a/tests/test_common.py b/tests/test_common.py index 32876e69..f86e0936 100644 --- a/tests/test_common.py +++ b/tests/test_common.py @@ -367,3 +367,18 @@ def test_asarray_copy(library): assert all(b[0] == 1.0) else: assert all(b[0] == 0.0) + + +@pytest.mark.parametrize("library", ["numpy", "cupy", "torch"]) +def test_clip_out(library): + """Test non-standard out= parameter for clip() + + (see "Avoid Restricting Behavior that is Outside the Scope of the Standard" + in https://data-apis.org/array-api-compat/dev/special-considerations.html) + """ + xp = import_(library, wrapper=True) + x = xp.asarray([10, 20, 30]) + out = xp.zeros_like(x) + xp.clip(x, 15, 25, out=out) + expect = xp.asarray([15, 20, 25]) + assert xp.all(out == expect)