@@ -119,6 +119,7 @@ def test_concat(dtypes, base_shape, data):
119
119
)
120
120
121
121
122
+ @pytest .mark .unvectorized
122
123
@given (
123
124
x = hh .arrays (dtype = xps .scalar_dtypes (), shape = shared_shapes ()),
124
125
axis = shared_shapes ().flatmap (
@@ -147,6 +148,7 @@ def test_expand_dims(x, axis):
147
148
)
148
149
149
150
151
+ @pytest .mark .unvectorized
150
152
@given (
151
153
x = hh .arrays (
152
154
dtype = xps .scalar_dtypes (), shape = hh .shapes (min_side = 1 ).filter (lambda s : 1 in s )
@@ -184,6 +186,7 @@ def test_squeeze(x, data):
184
186
assert_array_ndindex ("squeeze" , x , x_indices = sh .ndindex (x .shape ), out = out , out_indices = sh .ndindex (out .shape ))
185
187
186
188
189
+ @pytest .mark .unvectorized
187
190
@given (
188
191
x = hh .arrays (dtype = xps .scalar_dtypes (), shape = hh .shapes ()),
189
192
data = st .data (),
@@ -208,6 +211,7 @@ def test_flip(x, data):
208
211
out_indices = reverse_indices , kw = kw )
209
212
210
213
214
+ @pytest .mark .unvectorized
211
215
@given (
212
216
x = hh .arrays (dtype = xps .scalar_dtypes (), shape = shared_shapes (min_dims = 1 )),
213
217
axes = shared_shapes (min_dims = 1 ).flatmap (
@@ -248,6 +252,7 @@ def reshape_shapes(draw, shape):
248
252
return tuple (rshape )
249
253
250
254
255
+ @pytest .mark .unvectorized
251
256
@pytest .mark .skip ("flaky" ) # TODO: fix!
252
257
@given (
253
258
x = hh .arrays (dtype = xps .scalar_dtypes (), shape = hh .shapes (max_side = MAX_SIDE )),
@@ -280,6 +285,7 @@ def roll_ndindex(shape: Shape, shifts: Tuple[int], axes: Tuple[int]) -> Iterator
280
285
yield tuple ((i + sh ) % si for i , sh , si in zip (idx , all_shifts , shape ))
281
286
282
287
288
+ @pytest .mark .unvectorized
283
289
@given (hh .arrays (dtype = xps .scalar_dtypes (), shape = shared_shapes ()), st .data ())
284
290
def test_roll (x , data ):
285
291
shift_strat = st .integers (- hh .MAX_ARRAY_SIZE , hh .MAX_ARRAY_SIZE )
@@ -319,6 +325,7 @@ def test_roll(x, data):
319
325
assert_array_ndindex ("roll" , x , x_indices = sh .ndindex (x .shape ), out = out , out_indices = shifted_indices , kw = kw )
320
326
321
327
328
+ @pytest .mark .unvectorized
322
329
@given (
323
330
shape = shared_shapes (min_dims = 1 ),
324
331
dtypes = hh .mutually_promotable_dtypes (None ),
0 commit comments