Skip to content

Commit 55fddd2

Browse files
authored
FLOAT32 NOT NULL -> FLOAT NOT NULL (#2180)
1 parent 9697650 commit 55fddd2

File tree

4 files changed

+10
-10
lines changed

4 files changed

+10
-10
lines changed

docs/en/guides/51-ai-functions/index.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ Embeddings are vector representations of text that capture semantic meaning. Sim
2626

2727
## Vector Storage in Databend
2828

29-
Databend can store embedding vectors using the `ARRAY(FLOAT32 NOT NULL)` data type and perform similarity calculations with the cosine_distance function directly in SQL.
29+
Databend can store embedding vectors using the `ARRAY(FLOAT NOT NULL)` data type and perform similarity calculations with the cosine_distance function directly in SQL.
3030

3131
## Example: Document Similarity Search
3232

@@ -36,7 +36,7 @@ CREATE TABLE articles (
3636
id INT,
3737
title VARCHAR,
3838
content VARCHAR,
39-
embedding ARRAY(FLOAT32 NOT NULL)
39+
embedding ARRAY(FLOAT NOT NULL)
4040
);
4141

4242
-- Insert documents with embeddings

docs/en/sql-reference/20-sql-functions/11-ai-functions/02-ai-embedding-vector.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ CREATE TABLE documents (
5050
id INT,
5151
title VARCHAR,
5252
content VARCHAR,
53-
embedding ARRAY(FLOAT32 NOT NULL)
53+
embedding ARRAY(FLOAT NOT NULL)
5454
);
5555
```
5656

@@ -72,7 +72,7 @@ UPDATE documents SET embedding = ai_embedding_vector(content) WHERE embedding IS
7272

7373
After running the query, the embedding column in the table will contain the generated embeddings.
7474

75-
The embeddings are stored as an array of `FLOAT32` values in the embedding column, which has the `ARRAY(FLOAT32 NOT NULL)` column type.
75+
The embeddings are stored as an array of `FLOAT` values in the embedding column, which has the `ARRAY(FLOAT NOT NULL)` column type.
7676

7777
You can now use these embeddings for various natural language processing tasks, such as finding similar documents or clustering documents based on their content.
7878

docs/en/sql-reference/20-sql-functions/11-vector-distance-functions/00-vector-cosine-distance.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@ COSINE_DISTANCE(vector1, vector2)
1313

1414
## Arguments
1515

16-
- `vector1`: First vector (ARRAY(FLOAT32 NOT NULL))
17-
- `vector2`: Second vector (ARRAY(FLOAT32 NOT NULL))
16+
- `vector1`: First vector (ARRAY(FLOAT NOT NULL))
17+
- `vector2`: Second vector (ARRAY(FLOAT NOT NULL))
1818

1919
## Returns
2020

@@ -51,7 +51,7 @@ Create a table with vector data:
5151
```sql
5252
CREATE OR REPLACE TABLE vectors (
5353
id INT,
54-
vec ARRAY(FLOAT32 NOT NULL)
54+
vec ARRAY(FLOAT NOT NULL)
5555
);
5656

5757
INSERT INTO vectors VALUES

docs/en/sql-reference/20-sql-functions/11-vector-distance-functions/01-vector-l2-distance.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@ L2_DISTANCE(vector1, vector2)
1313

1414
## Arguments
1515

16-
- `vector1`: First vector (ARRAY(FLOAT32 NOT NULL))
17-
- `vector2`: Second vector (ARRAY(FLOAT32 NOT NULL))
16+
- `vector1`: First vector (ARRAY(FLOAT NOT NULL))
17+
- `vector2`: Second vector (ARRAY(FLOAT NOT NULL))
1818

1919
## Returns
2020

@@ -51,7 +51,7 @@ Create a table with vector data:
5151
```sql
5252
CREATE OR REPLACE TABLE vectors (
5353
id INT,
54-
vec ARRAY(FLOAT32 NOT NULL)
54+
vec ARRAY(FLOAT NOT NULL)
5555
);
5656

5757
INSERT INTO vectors VALUES

0 commit comments

Comments
 (0)