-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-comp_slack_sol.Rmd
127 lines (114 loc) · 4.94 KB
/
1-comp_slack_sol.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
## Solutions {-}
1. By the Fundamental Theorem of Linear Programming, (P) either
is unbounded or has an optimal solution. If it is the latter, then
by strong duality, \((D)\) has an optimal solution, which contradicts
that \((D)\) is infeasible. Hence, (P) must be unbounded.
2. We show that it is not an optimal solution to (P).
First, note that the dual problem of (P) is
\[\begin{array}{rrcrcrlll}
\max & y_1 & +& y_2 & & \\
\mbox{s.t.}
& y_1 & + & y_2 & + & y_3 & \leq & 0 \\
& y_1 & - & 2y_2 & + & 3y_3 & = & 4 \\
& 3y_1 & + & y_2 & - & 6y_3 & \leq & 2 \\
& y_1 & & & & & \leq & 0 \\
& & & y_2 & & & \geq & 0 \\
& & & & & y_3 & & \mbox{free.} \\
\end{array}\]
\end{bmatrix}\) were an optimal solution, there would exist
\(\vec{y^*}\) feasible to \((D)\) satisfying the complementary
slackness conditions with \(\vec{x}^*\):
\begin{eqnarray*}
y_1^* = 0 & \mbox{ or } & ~x_1^* + ~x_2^* + 3x_3^* = 1 \\
y_2^* = 0 & \mbox{ or } & ~x_1^* - 2x_2^* +~x_3^* = 1 \\
y_3^* = 0 & \mbox{ or } & ~x_1^* + 3x_2^* - 6x_3^* = 0 \\
x_1^* = 0 & \mbox{ or } & ~y_1^* + ~~y_2^* + ~y_3^* = 0 \\
x_2^* = 0 & \mbox{ or } & ~y_1^* - 2y_2^* + 3y_3^* = 4 \\
x_3^* = 0 & \mbox{ or } & 3y_1^* + ~y_2^* - 6y_3^* = 2. \\
\end{eqnarray*}
Since \(x^*_1 + x_2^* + 3x_3^* \lt 1\), we must have \(y_1^* = 0\).
Also, \(x_1^*, x_2^*\) are both nonzero. Hence,
\begin{eqnarray*}
y_1^* + y_2^* + y_3^* = 0~ \\
y_1^* - 2y_2^* + 3y_3^* = 4,
\end{eqnarray*}
implying that
\begin{eqnarray*}
y_2^* + y_3^* = 0~ \\
- 2y_2^* + 3y_3^* = 4.
\end{eqnarray*}
Solving gives \(y_2^* = -\frac{4}{5}\) and \(y_3^* = \frac{4}{5}\).
But this implies that \(y^*\) is not a feasible solution
to the dual problem since we need \(y_2^* \geq 0\).
Hence, \(\vec{x}^*\) is not an optimal solution to (P).
3. We show that it is not an optimal solution to (P).
First, note that the dual problem of (P) is
\[\begin{array}{rrcrcrlll}
\max & 2y_1 & +& y_2 & & \\
\mbox{s.t.}
& y_1 & - & y_2 & - & y_3 & \leq & 1 \\
& 2 y_1 & + & y_2 & + & y_3 & \leq & 2 \\
& 2 y_1 & + & y_2 & - & y_3 & \leq & -3 \\
& y_1 & , & y_2 & & & & \mbox{free.} \\
& & & & & y_3 & \geq & 0
\end{array}\]
Note that \(\vec{x}^* = \begin{bmatrix} 0 \\ 1 \\ 0
\end{bmatrix}\) is a feasible solution to (P).
If it were an optimal solution to (P), there would exist
\(\vec{y^*}\) feasible to the dual problem (D)
satisfying the complementary
slackness conditions with \(\vec{x}^*\):
\begin{eqnarray*}
y_1^* = 0 & \mbox{ or } & ~x_1^* + 2x_2^* + 2x_3^* = 2 \\
y_2^* = 0 & \mbox{ or } & -x_1^* + ~x_2^* + ~x_3^* = 1 \\
y_3^* = 0 & \mbox{ or } & -x_1^* + ~x_2^* - ~x_3^* = 0 \\
x_1^* = 0 & \mbox{ or } & ~y_1^* - y_2^* - y_3^* = 1 \\
x_2^* = 0 & \mbox{ or } & 2y_1^* + y_2^* + y_3^* = 2 \\
x_3^* = 0 & \mbox{ or } & 2y_1^* + y_2^* - y_3^* = -3. \\
\end{eqnarray*}
Since \(-x^*_1 + x_2^* - x_3^* \gt 0\), we must have \(y_3^* = 0\).
Also, \(x_2^* \gt 0\) implies that
\(2y_1^* + y_2^* + y_3^* = 2\).
Simplifying gives \(y_2^* = 2 -2y_1^*\).
Hence, for \(y^*\) to be feasible to the dual problem,
it needs to satisfy the third constraint,
\(2y_1^* + (2 - 2y_1^*) \leq -3\), which simplifies to
the absurdity \(2 \leq -3\).
Hence, \(\vec{x}^*\) is not an optimal solution to (P).
4. Let \(v\) denote the optimal value of (P).
Let (P') denote the problem
\[\begin{array}{rl}
\min & -x_i \\
\text{s.t.} & \mm{A}\vec{x} = \vec{b} \\
& \vec{c}^\T \vec{x} \leq v \\
& \vec{x} \geq \vec{0}
\end{array}\]
Note that \(x^*\) is a feasible solution to (P') if and only
if it is an optimal solution to (P).
Since \(x_i^* = 0\) for every optimal solution to (P), we see
that the optimal value of (P') is 0.
Let (D') denote the dual problem of (P'):
\[\begin{array}{rl}
\max & \vec{y}^\T \vec{b} + v u \\
\text{s.t.} &
\vec{y}^\T \mm{A}_p + c_p u \leq 0~~\text{ for all } p \neq i \\
& \vec{y}^\mathsf{T} \mm{A}_i + c_i u \leq -1 \\
& u \leq 0.
\end{array}
\]
Suppose that an optimal solution to (D') is given by
\(\vec{y}', u'\).
Let \(\bar{\vec{y}}\) be an optimal solution to (D).
We consider two cases.
**Case 1:** \(u' = 0\).
Then \({\vec{y}'}^\T\vec{b} = 0\).
Hence,
\(\vec{y}^* = \bar{\vec{y}} + \vec{y}'\)
is an optimal
solution to (D) with \({\vec{y}^*}^\T \mm{A}_i \lt c_i\).
**Case 2:** \(u' \lt 0\).
Then \({\vec{y}'}^\T\vec{b} + vu'= 0\),
implying that \(\frac{1}{|u'|} {\vec{y}'}^\T\vec{b} = v\).
Let \(\vec{y}^* = \frac{1}{|u|}\vec{y}'\).
Then \({\vec{y}^*}\) is an optimal
solution to (D) with \({\vec{y}^*}^\T \mm{A}_i \lt c_i\).