-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-duality_ex.Rmd
41 lines (37 loc) · 1.07 KB
/
1-duality_ex.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
## Exercises {-}
1. Write down the dual problem of
\[\begin{array}{rrcrcl}
\min & 4x_1 & - & 2x_2 \\
\text{s.t.}
& x_1 & + & 2x_2 & \geq & 3\\
& 3x_1 & - & 4x_2 & = & 0 \\
& & & x_2 & \geq & 0.
\end{array}\]
2. Write down the dual problem of the following:
\[
\begin{array}{rrcrcrcl}
\min & & &3x_2 & + & x_3 \\
\mbox{s.t.}
& x_1 & + & x_2 & + & 2x_3 & = & 1 \\
& x_1 & & & - & 3x_3 & \leq & 0 \\
& x_1 & , & x_2 & , & x_3 & \geq & 0.
\end{array}
\]
3. Write down the dual problem of the following:
\[
\begin{array}{rrcrcrcl}
\min & x_1 & & & - & 9x_3 \\
\mbox{s.t.}
& x_1 & - & 3x_2 & + & 2x_3 & = & 1 \\
& x_1 & & & & & \leq & 0 \\
& & & x_2 & & & & \mbox{free} \\
& & & & & x_3 & \geq & 0.
\end{array}\]
4. Determine all values \(c_1,c_2\) such that the linear programming problem
\[\begin{array}{rl}
\min & c_1 x_1 + c_2 x_2 \\
\text{s.t.} & 2x_1 + x_2 \geq 2 \\
& x_1 + 3x_2 \geq 1.
\end{array}
\]
has an optimal solution. Justify your answer