-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-duality_sol.Rmd
61 lines (53 loc) · 1.8 KB
/
1-duality_sol.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
## Solutions {-}
1. The dual is \[\begin{array}{rrcrcll}
\max & 3y_1 \\
\text{s.t.}
& y_1 & + & 3y_2 & = & 4\\
& 2y_1 & - & 4y_2 & \leq & -2 \\
& y_1 & & &\geq & 0.
\end{array}\]
2. The dual is \[\begin{array}{rrcrcll}
\max & y_1 & & \\
\mbox{s.t.}
& y_1 & + & y_2 & \leq & 0 \\
& y_1 & & & \leq & 3 \\
&2y_1 & - & 3y_2 & \leq & 1 \\
& y_1 & & & & \mbox{free} \\
& & & y_2 & \leq & 0.
\end{array}\]
3. The dual is \[\begin{array}{rrcll}
\max & y_1 \\
\mbox{s.t.}
& y_1 & \geq & 1 \\
& -3y_1 & = & 0 \\
& 2y_1 & \leq & -9 \\
& y_1 & & \mbox{free}.
\end{array}\]
4. Let (P) denote the given linear programming problem.
Note that \(\begin{bmatrix} x_1 \\ x_2\end{bmatrix} = \begin{bmatrix}
1 \\ 0\end{bmatrix}\) is a feasible solution to (P).
Therefore, by Theorem \@ref(fund-lp),
it suffices to find all values \(c_1,c_2\) such that
(P) is not unbounded. This amounts to finding all values
\(c_1,c_2\) such that the dual problem of (P) has a feasible solution.
The dual problem of (P) is \[\begin{array}{rl}
\max & 2 y_1 + y_2 \\
& 2y_1 + y_2 = c_1 \\
& y_1 + 3y_2 = c_2 \\
& y_1 , y_2 \geq 0. \\
\end{array}
\]
The two equality constraints gives
\(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} =
\begin{bmatrix}
\frac{3}{5}c_1 - \frac{1}{5} c_2 \\
-\frac{1}{5}c_1 + \frac{2}{5} c_2
\end{bmatrix}.\)
Thus, the dual problem is feasible if and only if
\(c_1\) and \(c_2\) are real numbers satisfying
\begin{align*}
\frac{3}{5}c_1 - \frac{1}{5} c_2 & \geq & 0 \\
-\frac{1}{5}c_1 + \frac{2}{5} c_2 & \geq & 0,
\end{align*}
or more simply,
\[\frac{1}{3} c_2 \leq c_1 \leq 2 c_2.\]