-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathica_train_dbs.m
362 lines (287 loc) · 11.9 KB
/
ica_train_dbs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
function [processedSig, processedSig_cell,recon_artifact,recon_artifact_cell,t] = ica_train_dbs(tTotal,data,stimChans,fs_data,scale_factor,numComponentsSearch,plotIt,channelInt,meanSub,orderPoly,pre,post)
%USAGE: function [subtracted_sig_matrixS_I, subtracted_sig_cellS_I] = ica_artifact_remove(t,data,stimChans,pre,post,fs_data,scale_factor,numComponentsSearch,plotIt,channelInt)
%This function will perform the fast_ica algorithm upon a data set in the
%format of m x n x p, where m is samples, n is channels, and p is the
%individual trial. This is for trains of stimuli FOR DBS
%
% data = samples x channels x trials
% tTotal = time vector
% stimChans = stimulation channels, or any channels to ignore
% pre = the time point at which to begin extracting the signal
% post = the time point at which to stop extracting the signal
% fs_data = sampling rate (Hz)
% scale_factor = scaling factor tp ensure the ICA algorithm functions
% correctly
%numComponentsSearch = the number of ICA components to search through for
% artifacts that meet a certain profile
% plotIt = plot it or not
% channelInt = plot a channel if interested
% REQUIRES FastICA algorithm in path
% set scale factor
if (~exist('scale_factor','var'))
scale_factor = 1000;
end
% make a time vector if one doesn't exist
if (~exist('tTotal','var'))
tTotal = 0:size(data,1);
end
% make a pre time condition to start from
% if this is not input, matching of artifact will fail
if (~exist('pre','var'))
pre = tTotal(1);
end
% make a post time condition to start from
% if this is not input, matching of artifact will fail
if (~exist('post','var'))
post = tTotal(end);
end
% default number of components to search
if (~exist('numComponentsSearch','var'))
numComponentsSearch = 15;
end
% plot intermediate steps
if (~exist('plotIt','var'))
plotIt = false;
end
% channel of interest for plotting if desired
if (~exist('channelInt','var'))
channelInt = 62;
end
if (~exist('meanSub','var'))
meanSub = 0;
end
if (~exist('orderPoly','var'))
orderPoly = 6;
end
freqFilter = false;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% get stim channels, as we don't want to perform ICA on them
bads = [];
badTotal = [stimChans; bads];
% total channels
numChans = size(data,2);
% make logical good channels matrix to index
goods = zeros(numChans,1);
channelsOfInt = 1:numChans;
goods(channelsOfInt) = 1;
% set the goods matrix to be zero where bad channels are
goods(badTotal) = 0;
% make it logical
goods = logical(goods);
% make storage matrices
i_icasigS = {};
i_mixing_matS = {};
i_sep_matS = {};
% extract the data of interest
dataInt = data(:,goods,:);
% NOTE THIS IS DIFFERENT THAN BEFORE, WE WANT TO KEEP STIMULATION IN THERE
dataIntTime = dataInt((tTotal>=pre & tTotal<=post),:,:);
t = tTotal(tTotal>=pre & tTotal<=post); % get new subselected t vector
if meanSub == 1
for i = 1:size(dataIntTime,2)
for j = 1:size(dataIntTime,3)
data_int_temp = squeeze(dataIntTime(:,i,j));
[p,s,mu] = polyfit((1:numel(data_int_temp))',data_int_temp,orderPoly);
f_y = polyval(p,(1:numel(data_int_temp))',[],mu);
% subtract poly fit
dataIntTime(:,i,j) = data_int_temp - f_y;
%dataIntTime = dataIntTime - repmat(mean(data,1),size(data,1),1);
end
% figure;
% plot(f_y)
end
end
numTrials = size(dataIntTime,3);
for i = 1:numTrials
sig_epoch = scale_factor.*squeeze(dataIntTime(:,:,i));
%[icasig_temp,mixing_mat_temp,sep_mat_temp] = fastica(sig_epoch','g','pow3','numOfIC',numComponentsSearch);
[icasig_temp,mixing_mat_temp,sep_mat_temp] = fastica(sig_epoch','g','gauss','approach','symm');
i_icasigS{i} = icasig_temp;
i_mixing_matS{i} = mixing_mat_temp;
i_sep_matS{i} = sep_mat_temp;
end
%% visualize the trial by trial ICA components
% %
if plotIt
for j = 1:size(dataIntTime,3)
figure
numInt = min(size(i_icasigS{j},1),5);
% numInt = 5;
for i = 1:numInt
sh(i)= subplot(numInt,1,i);
plot(t,i_icasigS{j}(i,:),'linewidth',2)
title(['ICA component # ', num2str(i), ' Trial # ', num2str(j)])
set(gca,'fontsize',12)
end
linkaxes(sh,'xy')
xlabel('Time (ms)')
%subtitle(['Trial # ', num2str(j)])
end
end
%% set ICA components that are like the artifact to zero (they occur near a certain time and have prominence)
% need to adjust this for case where it's close to zero but not quite
% equal?
numTrials = size(dataIntTime,3);
i_ica_art = {};
i_ica_mix_art = {};
% figure
% hold on
for i = 1:numTrials
numICs = size(i_icasigS{i},1);
start_index = 1;
for j = 1:numICs
% have to tune this
[pk_temp_pos,locs_temp_pos] = findpeaks(i_icasigS{i}(j,:),fs_data,'MinPeakProminence',10);
[pk_temp_neg,locs_temp_neg] = findpeaks(-1*i_icasigS{i}(j,:),fs_data,'MinPeakProminence',10);
%
% findpeaks(-1*i_icasigS{i}(j,:),fs_data,'MinPeakProminence',10)
% findpeaks(i_icasigS{i}(j,:),fs_data,'MinPeakProminence',10)
% %
% should be at least 10 peaks even at 185 Hz trains
total_peaks = length(pk_temp_pos)+length(pk_temp_neg);
[f,P1] = spectralAnalysisComp(fs_data,i_icasigS{i}(j,:));
[maxi,ind] = max(P1(f>62));
f_temp= f(f>62);
rounded_f = round(f_temp(ind),-1);
% DJC 4-17-2017 - add in 185 Hz stim peak
if ((~isempty(pk_temp_pos) || ~isempty(pk_temp_neg)) && total_peaks > 10 && mod(rounded_f,185) == 0)
% if ((~isempty(pk_temp_pos) || ~isempty(pk_temp_neg)) && total_peaks > 10)
i_ica_art{i}(start_index,:) = i_icasigS{i}(j,:);
i_ica_mix_art{i}(:,start_index) = i_mixing_matS{i}(:,j);
i_icasigS{i}(j,:) = 0;
i_mixing_matS{i}(:,j) = 0; % according to ICA removes EEG
% artifacts - just set rows of activation waveforms to be zero?
start_index = start_index+1;
else
[f,P1] = spectralAnalysisComp(fs_data,i_icasigS{i}(j,:));
[maxi,ind] = max(P1);
rounded_f = round(f(ind),-1);
% 200 Hz frequency content, 60 Hz frequency content (added in
% 120, 180 4-11-2017
% if (mod(rounded_f,60) == 0 | mod(rounded_f,120) == 0 | mod(rounded_f,180) == 0)
% %if mod(rounded_f,60) == 0 || mod(rounded_f,200) == 0
% i_ica_kept{i}(start_index,:) = i_icasigS{i}(j,:);
% i_ica_mix_kept{i}(:,start_index) = i_mixing_matS{i}(:,j);
% start_index = start_index+1;
% end
end
% if mod(rounded_f,200) == 0
% i_ica_kept{i}(start_index,:) = i_icasigS{i}(j,:);
% i_ica_mix_kept{i}(:,start_index) = i_mixing_matS{i}(:,j);
% start_index = start_index+1;
% end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% this was the original
% % have to tune this
% [pk_temp_pos,locs_temp_pos] = findpeaks(i_icasigS{i}(j,:),fs_data,'MinPeakProminence',10);
% [pk_temp_neg,locs_temp_neg] = findpeaks(-1*i_icasigS{i}(j,:),fs_data,'MinPeakProminence',10);
% %
%
% % findpeaks(-1*i_icasigS{i}(j,:),fs_data,'MinPeakProminence',10)
% % findpeaks(i_icasigS{i}(j,:),fs_data,'MinPeakProminence',10)
% % %
%
% % should be at least 10 peaks even at 100 Hz trains
% total_peaks = length(pk_temp_pos)+length(pk_temp_neg);
%
% if ((~isempty(pk_temp_pos) || ~isempty(pk_temp_neg)) && total_peaks > 10)
%
% i_ica_art{i}(start_index,:) = i_icasigS{i}(j,:);
% i_ica_mix_art{i}(:,start_index) = i_mixing_matS{i}(:,j);
%
% i_icasigS{i}(j,:) = 0;
% % i_mixing_matS{i}(:,j) = 0; % according to ICA removes EEG
% % artifacts - just set rows of activation waveforms to be zero?
% %
%
%
%
% start_index = start_index+1;
% else
%
% [f,P1] = spectralAnalysisComp(fs_data,i_icasigS{i}(j,:));
% [maxi,ind] = max(P1);
% rounded_f = round(f(ind),-1);
%
% % 200 Hz frequency content, 60 Hz frequency content (added in
% % 120, 180 4-11-2017
% % if freqFilter
% % if (mod(rounded_f,60) == 0 | mod(rounded_f,120) == 0 | mod(rounded_f,180) == 0)
% % %if mod(rounded_f,60) == 0 || mod(rounded_f,200) == 0
% %
% % i_ica_art{i}(start_index,:) = i_icasigS{i}(j,:);
% % i_ica_mix_art{i}(:,start_index) = i_mixing_matS{i}(:,j);
% %
% % i_icasigS{i}(j,:) = 0;
% % % i_mixing_matS{i}(:,j) = 0;
% %
% %
% % start_index = start_index+1;
% %
% % end
% % end
%
% end
% % if mod(rounded_f,200) == 0
% % i_ica_kept{i}(start_index,:) = i_icasigS{i}(j,:);
% % i_ica_mix_kept{i}(:,start_index) = i_mixing_matS{i}(:,j);
% % start_index = start_index+1;
% % end
%
%
% end
end
%%
%%%%%%%%%%%%%%%%%%%%%%%
% reconstruct stim artifact across channels
% make matrix of reconstruction artifacts
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:numTrials
recon_artifact_temp = (i_ica_mix_art{i}*i_ica_art{i})'./scale_factor;
total_art(:,goods) = recon_artifact_temp;
total_art(:,badTotal) = zeros(size(recon_artifact_temp,1),size(badTotal,2));
recon_artifact_cell{i} = total_art;
recon_artifact(:,:,i) = total_art;
num_modes_art = size(i_ica_art{i},1);
if plotIt
figure
plot(total_art(:,channelInt))
hold on
plot(data((tTotal>=pre & tTotal<=post),channelInt,i))
title(['Channel ', num2str(channelInt), ' Trial ', num2str(i), 'Number of ICA modes kept = ', num2str(num_modes_art)])
legend({'recon artifact','original signal'})
end
end
%% subtract each one of these components
processedSig_cell = {};
processedSig = zeros(size(dataIntTime,1),size(data,2),size(numTrials,1));
total_sig = zeros(size(dataIntTime,1),size(data,2));
for i = 1:numTrials
reconstructued_sig = ((i_mixing_matS{i}*i_icasigS{i})')./scale_factor;
num_modes_art = size(i_ica_art{i},1);
num_modes_kept = size(i_icasigS{i},1) - num_modes_art;
% add in bad channels back
total_sig(:,goods) = reconstructued_sig;
total_sig(:,badTotal) = zeros(size(processedSig,1),size(badTotal,2));
processedSig_cell{i} = total_sig;
processedSig(:,:,i) = total_sig;
if plotIt
figure
plot(t,1e6*total_sig(:,channelInt),'LineWidth',2)
hold on
plot(t,1e6*data((tTotal>=pre & tTotal<=post),channelInt,i),'LineWidth',2)
title(['Channel ', num2str(channelInt), ' Trial ', num2str(i), ' Number of ICA modes excluded = ', num2str(num_modes_art)])
legend({'reconstructed','original signal'})
ylabel(['Signal \muV'])
xlabel(['Time (ms)'])
set(gca,'Fontsize',[14]),
figure
plot(t,1e6*total_sig(:,channelInt),'LineWidth',2)
title(['Reconstructed Signal for ', num2str(num_modes_kept), ' ICA modes, Channel ', num2str(channelInt), ' Trial ', num2str(i)])
ylabel(['Signal \muV'])
xlabel(['Time (ms)'])
set(gca,'Fontsize',[14])
end
%
end
end