-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcluster-triples.py
executable file
·145 lines (114 loc) · 3.87 KB
/
cluster-triples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import csv
import pickle
import numpy as np
import requests
import scipy
from sklearn.cluster import DBSCAN
from sklearn.feature_extraction.text import TfidfVectorizer
from extract_ReVerb_patterns_PT import Triple
from sklearn.metrics.pairwise import cosine_distances
from sklearn.metrics.pairwise import pairwise_distances
__author__ = "David S. Batista"
__email__ = "[email protected]"
def generate_embeddings(text):
embeddings_vector = np.zeros(400)
for token in text.split():
try:
embeddings_vector += get_word_embedding(token)
except KeyError:
print "Not Found:", token
except ValueError:
print "Value Error:", token
return embeddings_vector
def get_word_embedding(word):
payload = {'word': word}
answer = requests.get('http://127.0.0.1:8889/get_vector?', params=payload)
return np.array(answer.json()['vector'])
def compute_embeddings_vectors():
triples = []
count = 0
with open('triples.csv', 'r') as csvfile:
reader = csv.reader(csvfile, delimiter='\t')
for t in reader:
e1, e1_type, rel, e2, e2_type = t[0], t[1], t[2], t[3], t[4]
vector = generate_embeddings(rel)
t = Triple(e1, e1_type, rel, e2, e2_type)
t.vector = vector
triples.append(t)
count += 1
if count % 10000 == 0:
print count
with open('triples_vectors.pkl', 'w') as out_file:
pickle.dump(triples, out_file)
def compute_pairwise_distances(triples, vectors):
# size = len(vectors)
size = 69213
distances_matrix = np.zeros((size, size))
for i, ele_1 in enumerate(vectors):
for j, ele_2 in enumerate(vectors):
# Matrix is symmetrical, no need to calculate every position
if j >= i:
break
# distance = cosine_distances(ele_1.reshape(1, -1), ele_2.reshape(1, -1))
distance = cosine_distances(ele_1, ele_2)
distances_matrix[i, j] = distance[0][0]
distances_matrix[j, i] = distance[0][0]
if i % 500 == 0:
print i
return distances_matrix
def main():
"""
compute_embeddings_vectors()
print "Reading embedding vectors"
with open('triples_vectors.pkl', 'r') as in_file:
triples = pickle.load(in_file)
vectors = []
for t in triples:
vectors.append(t.vector)
"""
text = []
triples = []
with open('triples.csv', 'r') as csvfile:
reader = csv.reader(csvfile, delimiter='\t')
for t in reader:
e1, e1_type, rel, e2, e2_type = t[0], t[1], t[2], t[3], t[4]
t = Triple(e1, e1_type, rel, e2, e2_type)
text.append(rel)
triples.append(t)
tfidf = TfidfVectorizer()
tfidf_matrix = tfidf.fit_transform(text)
print "Clustering"
dbscan = DBSCAN(eps=0.4, min_samples=15, metric='cosine', algorithm='brute',
leaf_size=30, p=None, n_jobs=1)
labels = dbscan.fit_predict(tfidf_matrix)
with open('triples_labels.txt', 'w') as out_file:
for l in labels:
out_file.write(str(l) + '\n')
print "Reading cluster labels"
labels = []
with open('triples_labels.txt', 'r') as in_file:
for label in in_file:
labels.append(int(label.strip()))
for i in range(len(triples)):
triples[i].label = labels[i]
clusters = dict()
for t in triples:
try:
clusters[t.label] += 1
except KeyError:
clusters[t.label] = 1
print clusters
exit(-1)
# print len(clusters)
# top-terms for each cluster
for x in range(-1, len(clusters)):
print x, len(clusters[x])
for t in triples:
if t.label == str(x):
print t.rel
print
print
if __name__ == "__main__":
main()