-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbench.py
161 lines (137 loc) · 4.59 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import asyncio
import logging
from enum import Enum
from pathlib import Path
import hydra
import neptune
from bench.evaluator import Evaluator
from bench.loaders import CollectionDataLoader, IQLViewDataLoader, SQLViewDataLoader
from bench.metrics import (
AggregationAccuracy,
ExecutionAccuracy,
FilteringAccuracy,
FilteringPrecision,
FilteringRecall,
IQLAggregationCorrectness,
IQLAggregationParseability,
IQLFiltersAccuracy,
IQLFiltersCorrectness,
IQLFiltersParseability,
IQLFiltersPrecision,
IQLFiltersRecall,
MetricSet,
SQLExactMatch,
ViewSelectionAccuracy,
ViewSelectionPrecision,
ViewSelectionRecall,
)
from bench.pipelines import CollectionEvaluationPipeline, IQLViewEvaluationPipeline, SQLViewEvaluationPipeline
from bench.utils import save
from hydra.core.hydra_config import HydraConfig
from neptune.utils import stringify_unsupported
from omegaconf import DictConfig
logging.getLogger("LiteLLM").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
log = logging.getLogger(__name__)
class EvaluationType(Enum):
"""
Enum representing the evaluation type.
"""
IQL = "IQL_VIEW"
SQL = "SQL_VIEW"
E2E = "COLLECTION"
EVALUATION_DATALOADERS = {
EvaluationType.IQL.value: IQLViewDataLoader,
EvaluationType.SQL.value: SQLViewDataLoader,
EvaluationType.E2E.value: CollectionDataLoader,
}
EVALUATION_PIPELINES = {
EvaluationType.IQL.value: IQLViewEvaluationPipeline,
EvaluationType.SQL.value: SQLViewEvaluationPipeline,
EvaluationType.E2E.value: CollectionEvaluationPipeline,
}
EVALUATION_METRICS = {
EvaluationType.IQL.value: MetricSet(
AggregationAccuracy,
FilteringAccuracy,
FilteringPrecision,
FilteringRecall,
IQLAggregationParseability,
IQLAggregationCorrectness,
IQLFiltersAccuracy,
IQLFiltersPrecision,
IQLFiltersRecall,
IQLFiltersParseability,
IQLFiltersCorrectness,
ExecutionAccuracy,
),
EvaluationType.SQL.value: MetricSet(
SQLExactMatch,
ExecutionAccuracy,
),
EvaluationType.E2E.value: MetricSet(
AggregationAccuracy,
FilteringAccuracy,
FilteringPrecision,
FilteringRecall,
IQLAggregationParseability,
IQLAggregationCorrectness,
IQLFiltersAccuracy,
IQLFiltersPrecision,
IQLFiltersRecall,
IQLFiltersParseability,
IQLFiltersCorrectness,
ViewSelectionAccuracy,
ViewSelectionPrecision,
ViewSelectionRecall,
SQLExactMatch,
ExecutionAccuracy,
),
}
async def bench(config: DictConfig) -> None:
"""
Function running evaluation for all datasets and evaluation tasks defined in hydra config.
Args:
config: Hydra configuration.
"""
log.info("Starting evaluation: %s", config.setup.name)
dataloader = EVALUATION_DATALOADERS[config.setup.name](config)
pipeline = EVALUATION_PIPELINES[config.setup.name](config)
metrics = EVALUATION_METRICS[config.setup.name](config)
evaluator = Evaluator(config.setup.name)
results = await evaluator.compute(
pipeline=pipeline,
dataloader=dataloader,
metrics=metrics,
)
log.info("Evaluation finished. Saving results...")
output_dir = Path(HydraConfig.get().runtime.output_dir)
metrics_file = output_dir / "metrics.json"
results_file = output_dir / "results.json"
save(metrics_file, metrics=results["metrics"], time_perf=results["time_perf"])
save(results_file, results=results["results"])
log.info("Evaluation results saved under directory: %s", output_dir)
if config.neptune:
run = neptune.init_run()
run["sys/tags"].add(
[
config.setup.name,
*config.data.db_ids,
*config.data.difficulties,
]
)
run["config"] = stringify_unsupported(config)
run["evaluation/metrics"] = stringify_unsupported(results["metrics"])
run["evaluation/time_perf"] = stringify_unsupported(results["time_perf"])
run["evaluation/metrics.json"].upload(metrics_file.as_posix())
run["evaluation/results.json"].upload(results_file.as_posix())
@hydra.main(config_path="config", config_name="config", version_base="3.2")
def main(config: DictConfig) -> None:
"""
Function running evaluation for all datasets and evaluation tasks defined in hydra config.
Args:
config: Hydra configuration.
"""
asyncio.run(bench(config))
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter