Examples demonstrating different agent templates and model behaviors. Each agent has a specific role:
- Memory Agent: Records and tracks tasks and context
- Dialogue Agent: Manages interactive discussions
- Reflection Agent: Analyzes and reviews progress
- Summary Agent: Synthesizes decisions and actions
Let’s start with our default model recording a new task.
llm -m llama3.2 -t memory-agent "New task discussed: Implement authentication system"
See how Claude formats memory entries and handles context.
llm -m "anthropic/claude-3-5-sonnet-20241022" -t memory-agent \
"New task discussed: Implement authentication system"
Compare CodeLlama’s structured approach to memory recording.
llm -m codellama -t memory-agent \
"New task discussed: Implement authentication system"
Examine DeepSeek’s memory organization style.
llm -m deepseek-r1 -t memory-agent \
"New task discussed: Implement authentication system"
Start a discussion about system implementation using our default model.
llm -m llama3.2 -t dialogue-agent \
"Let's discuss the authentication system implementation approach"
Notice how Claude structures the conversation flow.
llm -m "anthropic/claude-3-5-sonnet-20241022" -t dialogue-agent \
"Let's discuss the authentication system implementation approach"
See CodeLlama’s technical focus in dialogue.
llm -m codellama -t dialogue-agent \
"Let's discuss the authentication system implementation approach"
Analyze a morning design session with our default model.
llm -m llama3.2 -t reflection-agent \
"Morning session focused on auth system design choices"
Compare DeepSeek’s analytical approach.
llm -m deepseek-r1 -t reflection-agent \
"Morning session focused on auth system design choices"
Examine Claude’s structured reflection style.
llm -m "anthropic/claude-3-5-sonnet-20241022" -t reflection-agent \
"Morning session focused on auth system design choices"
Document Makefile patterns with our default model.
llm -m llama3.2 -t summary-agent \
"Show key patterns in creating and maintaining Makefiles"
See how Claude structures action items and decisions.
llm -m "anthropic/claude-3-5-sonnet-20241022" -t summary-agent \
"Document action items from our auth system design review"
This example demonstrates all agents working together on a single task. Note that we use llama3.2 for consistency in automated execution.
# Step 1: Memory agent records the task
llm -m llama3.2 -t memory-agent "New auth system design task" \
> data/agents/workflow/1-memory.md
# Step 2: Dialogue agent discusses approach
llm -m llama3.2 -t dialogue-agent "Discuss auth system implementation strategy" \
> data/agents/workflow/2-dialogue.md
# Step 3: Reflection agent analyzes session
llm -m llama3.2 -t reflection-agent "Review morning auth system design session" \
> data/agents/workflow/3-reflection.md
# Step 4: Summary agent documents decisions
llm -m llama3.2 -t summary-agent "Summarize auth system design decisions and next steps" \
> data/agents/workflow/4-summary.md
# Combine all outputs for complete view
cat data/agents/workflow/*.md
- Basic examples use llama3.2 and are marked with :llm t for automated execution
- Model comparison examples use :llm nil as they’re for manual exploration
- All outputs are organized under data/agents/ in categorized subdirectories
- The workflow example demonstrates practical agent collaboration
- Each agent brings different strengths to the analysis process