-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalibrate_homography.py
419 lines (367 loc) · 17.6 KB
/
Calibrate_homography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import math
import os
import sys
from pathlib import Path
import matplotlib
import matplotlib.figure
from PyQt5 import QtWidgets, QtGui, QtCore
from PyQt5.QtCore import Qt
from PyQt5.QtGui import QBrush
from PyQt5.QtWidgets import QFileDialog, QLabel, QLineEdit, QPushButton, QWidget, QAction
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
import cv2 as cv
import numpy as np
import pandas as pd
from scipy.spatial import distance as dist
import csv
class HomographyCalibration(QtWidgets.QMainWindow):
def __init__(self, parent=None):
super(HomographyCalibration, self).__init__(parent)
self.initUI()
def initUI(self):
self.setGeometry(100, 100, 800, 600)
self.center()
self.setWindowTitle('Homography software')
grid = QtWidgets.QGridLayout()
grid.spacing()
self.central_widget = QWidget()
self.label = MarkCalibrationPoints()
self.figure = matplotlib.figure.Figure(figsize=(10, 5))
self.canvas = FigureCanvas(self.figure)
rectangleWidth = QLabel('Rectangle Width')
rectangleHeight = QLabel('Rectangle Height')
rectangleWidth.setAlignment(QtCore.Qt.AlignRight)
rectangleHeight.setAlignment(QtCore.Qt.AlignRight)
self.rectangleWidthEdit = QLineEdit()
self.rectangleHeightEdit = QLineEdit()
calibrateButton = QPushButton("Calibrate")
calibrateButton.clicked.connect(self.startCalibration)
saveButton = QPushButton("Save")
saveButton.resize(150, 50)
saveButton.clicked.connect(self.saveMatrix)
menubar = self.menuBar()
fileMenu = menubar.addMenu('File')
upload_csv = QAction('Upload csv', self)
upload_image = QAction('Upload image', self)
upload_video = QAction("Upload video", self)
upload_image_folder = QAction('Upload image folder', self)
fileMenu.addAction(upload_csv)
fileMenu.addAction(upload_image)
fileMenu.addAction(upload_video)
fileMenu.addAction(upload_image_folder)
upload_csv.triggered.connect(self.upload_csv)
upload_image.triggered.connect(self.upload_image)
upload_video.triggered.connect(self.upload_video)
upload_image_folder.triggered.connect(self.upload_image_folder)
grid.addWidget(self.label, 3, 1, 1, 2)
grid.addWidget(self.canvas, 3, 3, 1, 2)
grid.addWidget(rectangleWidth, 5, 1, 1, 2)
grid.addWidget(self.rectangleWidthEdit, 5, 3, 1, 2)
grid.addWidget(rectangleHeight, 6, 1, 1, 2)
grid.addWidget(self.rectangleHeightEdit, 6, 3, 1, 2)
grid.addWidget(calibrateButton, 7, 3, 1, 2)
grid.addWidget(saveButton, 8, 3)
self.central_widget.setLayout(grid)
self.setCentralWidget(self.central_widget)
self.folder_dict = {}
def upload_csv(self): //Allows you to upload a csv file with a list of url's
self.csv = True
self.folder = False
buttonflag = True
self.filename = QFileDialog.getOpenFileName(None, 'Open file', os.getcwd(), "csv files (*.csv)")
print("File uploaded " + self.filename[0])
self.file = self.filename[0]
self.label.csvUrls(self.filename[0], buttonflag)
def upload_video(self): //Allows the user to upload the video file
self.csv = False
self.folder = False
buttonflag = False
self.filename = QFileDialog.getOpenFileName(None, 'Open file', os.getcwd(), "Video files (*.mp4)")
self.file = self.filename[0]
self.label.videoFile(self.file, buttonflag)
def upload_image(self): //Allows the user to upload an image
self.csv = False
self.folder = False
buttonflag = False
self.filename = QFileDialog.getOpenFileName(None, 'Open file', os.getcwd(), "Image Files (*.png *.jpg *.bmp)")
self.file = self.filename[0]
self.label.imageFile(self.file, buttonflag)
def upload_image_folder(self): //Allows the user to upload an image folder with the bunch of images
self.csv = False
self.folder = True
buttonFlag = True
directory = QFileDialog.getExistingDirectory(self, 'Select image folder')
images = []
for filename in os.listdir(directory):
img = cv.imread(os.path.join(directory, filename))
if img is not None:
self.folder_dict[os.path.join(directory, filename)] = img
images.append(cv.imread(os.path.join(directory, filename)))
self.label.imageFolder(images, buttonFlag)
def startCalibration(self): //Calls the image and allows you to mark 4 points. Height and width of the rectangle is to be specified in the ui
print("In calibration")
self.transformed_width = int(self.rectangleWidthEdit.text())
self.transformed_height = int(self.rectangleHeightEdit.text())
print(self.transformed_height)
print(self.transformed_width)
self.refPt = self.label.refpt
if len(self.refPt) < 4:
msg = QtWidgets.QMessageBox.information(self, "Mark points",
"Mark 4 points and then press the calibrate button")
else:
self.pts1 = np.array(self.refPt, dtype=np.float32)
self.pts1 = self.order_points(self.pts1)
print(f"First set of points: {self.pts1}")
top_left = np.array((500, 500))
pts2 = np.float32([top_left + [0, 0],
top_left + [self.transformed_width, 0],
top_left + [self.transformed_width, self.transformed_height],
top_left + [0, self.transformed_height]])
self.M = cv.getPerspectiveTransform(self.pts1, pts2)
print(self.M)
self.plot1()
def order_points(self, pts): //Sorts the 4 points in the clockwise fashion
xSorted = pts[np.argsort(pts[:, 0]), :]
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
(br, tr) = rightMost[np.argsort(D)[::-1], :]
return np.array([tl, tr, br, bl], dtype="float32")
def saveMatrix(self): //File written in csv
if self.csv:
self.df = pd.read_csv(self.filename[0], index_col=[0])
if "Rectangle Height" not in self.df.columns:
self.df["Rectangle Height"] = ""
if "Rectangle Width" not in self.df.columns:
self.df["Rectangle Width"] = ""
if "Matrix" not in self.df.columns:
self.df["Matrix"] = ""
if "Marked points" not in self.df.columns:
self.df["Marked Points"] = ""
self.rownumber = self.label.index
self.rowindex = self.df.index[self.rownumber]
self.df.loc[self.rowindex, "Rectangle Height"] = self.transformed_height
self.df.loc[self.rowindex, "Rectangle Width"] = self.transformed_width
self.df.loc[self.rowindex, "Matrix"] = self.M.tostring()
self.df.loc[self.rowindex, "Marked Points"] = self.pts1.tostring()
self.df.to_csv(self.filename[0])
print("File saved")
elif self.csv == False:
print("Saving'''''''''''''")
if not os.path.exists('Camera_Calibration_details.csv'):
with open('Camera_Calibration_details.csv', 'a+', newline='') as file:
writer = csv.writer(file)
writer.writerow(
["Camera_Name", "FileName", "Calibrated points", "Rectangle Width", "Rectangle Height",
"Matrix"])
file.close()
if self.folder:
for file, image_array in self.folder_dict.items():
if np.array_equal(image_array, self.label.image_array):
self.file = file
if not self.existingRowCheck():
self.writeCSV()
def existingRowCheck(self):
df = pd.read_csv('Camera_Calibration_details.csv', index_col=[0])
exists = df.isin([Path(self.file).stem]).any().any()
if exists:
index = df.FileName[df.FileName == Path(self.file).stem].index.tolist()[0]
df.loc[index, "Calibrated points"] = self.pts1.tostring()
df.loc[index, "Rectangle Width"] = self.transformed_width
df.loc[index, "Rectangle Height"] = self.transformed_height
df.loc[index, "Matrix"] = self.M.tostring()
df.to_csv('Camera_Calibration_details.csv')
return exists
def writeCSV(self):
i = 0
with open('Camera_Calibration_details.csv', 'r') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
print(row)
if row[0]:
i = i + 1
else:
break
CameraName = "Camera" + str(i)
with open('Camera_Calibration_details.csv', 'a+', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(
[CameraName, Path(self.file).stem, self.pts1.tostring(), self.transformed_width,
self.transformed_height,
self.M.tostring()])
csvfile.close()
def plot1(self):
self.figure.clf()
frame = self.label.static_image.copy()
for pt in self.refPt:
cv.circle(frame, (int(pt[0]), int(pt[1])), 8, (200, 0, 0), -1)
ax1 = self.figure.add_subplot(121)
ax1.set_title('Input')
ax1.imshow(frame[..., ::-1])
dst = cv.warpPerspective(frame, self.M, (frame.shape[1] * 2, frame.shape[0] * 2))
ax2 = self.figure.add_subplot(122)
ax2.set_title('Output')
ax2.imshow(dst[..., ::-1])
self.canvas.draw_idle()
def center(self):
qr = self.frameGeometry()
cp = QtWidgets.QDesktopWidget().availableGeometry().center()
qr.moveCenter(cp)
self.move(qr.topLeft())
class MarkCalibrationPoints(QtWidgets.QWidget):
def __init__(self, parent=None):
super(MarkCalibrationPoints, self).__init__(parent)
self.csvFlag = False
self.imageFlag = False
self.rtsp_urls = []
self._zoom = 0
lay = QtWidgets.QHBoxLayout(self)
self.arrowLeftButton = QtWidgets.QToolButton()
self.arrowLeftButton.setArrowType(Qt.LeftArrow)
self.arrowLeftButton.clicked.connect(self.previousImage)
self.gv = QtWidgets.QGraphicsView()
self.arrowRightButton = QtWidgets.QToolButton()
self.arrowRightButton.setArrowType(Qt.RightArrow)
self.arrowRightButton.clicked.connect(self.nextImage)
lay.addWidget(self.arrowLeftButton)
lay.addWidget(self.gv)
lay.addWidget(self.arrowRightButton)
def imageFile(self, filename, flag):
image = cv.imread(filename)
self.arrowLeftButton.setEnabled(flag)
self.arrowRightButton.setEnabled(flag)
self.cvToQImage(image)
def imageFolder(self, imageList, flag):
self.csvFlag = False
self.imageFlag = True
self.arrowLeftButton.setEnabled(flag)
self.arrowRightButton.setEnabled(flag)
self.index = 0
self.imageList = imageList
self.image_array = self.imageList[self.index]
self.cvToQImage(self.image_array)
def csvUrls(self, filename, flag):
self.index = 0
self.csvFlag = True
self.imageFlag = False
self.arrowLeftButton.setEnabled(flag)
self.arrowRightButton.setEnabled(flag)
df = pd.read_csv(filename, index_col=[0])
self.rtsp_urls = df["IP_address"].to_list() //change your column name from IP_address to your respective column that has the video urls
for url in self.rtsp_urls:
cap = cv.VideoCapture(url)
ret, image = cap.read()
if not ret:
self.rtsp_urls.remove(url)
self.csvVideo(self.rtsp_urls[self.index])
def csvVideo(self, url):
cap = cv.VideoCapture(url)
ret, image = cap.read()
self.cvToQImage(image)
def videoFile(self, filename, flag):
self.arrowLeftButton.setEnabled(flag)
self.arrowRightButton.setEnabled(flag)
cap = cv.VideoCapture(filename)
ret, image = cap.read()
self.cvToQImage(image)
def cvToQImage(self, static_image):
try:
print("Converting image..")
self.static_image = static_image.copy()
cv.putText(self.static_image, text="Start from top left point, go clockwise", org=(10, 50),
fontFace=cv.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 125, 0), thickness=2)
image = QtGui.QImage(self.static_image, self.static_image.shape[1], \
self.static_image.shape[0], self.static_image.shape[1] * 3, QtGui.QImage.Format_RGB888)
image = image.rgbSwapped()
self.processImage(image)
except:
pass
def processImage(self, image):
self.refpt = []
self.item_dict = {}
self.image = QtGui.QPixmap.fromImage(image).scaled(
image.width(),
image.height(),
aspectRatioMode=Qt.KeepAspectRatio,
transformMode=Qt.SmoothTransformation,
)
self.scene = QtWidgets.QGraphicsScene(0, 0, image.width(), image.height())
self.scene.addPixmap(self.image)
self.gv.setScene(self.scene)
self.gv.installEventFilter(self)
self.items = []
def eventFilter(self, obj, event):
d = []
distance_dict = {}
if obj == self.gv and event.type() == QtCore.QEvent.MouseButtonPress: //Mouse Left click to mark a point on the image
if event.button() == QtCore.Qt.LeftButton:
if len(self.refpt) < 4:
p = self.gv.mapToScene(event.pos())
self.refpt.append([p.__pos__().x(), p.__pos__().y()])
self.draw(p)
else:
msg = QtWidgets.QMessageBox.information(self, "4 points allowed",
"Your allowed to mark only 4 points on the image")
elif event.button() == QtCore.Qt.RightButton: //Mouse Right click to remove the closes marked point
p = self.gv.mapToScene(event.pos())
if len(self.refpt) != 0:
for i in self.refpt:
distance = math.sqrt((p.__pos__().x() - i[0]) ** 2 + (p.__pos__().y() - i[1]) ** 2)
d.append(distance)
distance_dict[distance] = i
minimum_ditance = min(d)
if len(self.refpt) != 0:
self.refpt.remove(distance_dict.get(minimum_ditance))
self.undo(distance_dict.get(minimum_ditance))
return QtWidgets.QWidget.eventFilter(self, obj, event)
def draw(self, p):
it = QtWidgets.QGraphicsEllipseItem(0, 0, 10, 10)
it.setPen(QtGui.QPen(QtCore.Qt.blue, 3, QtCore.Qt.SolidLine))
it.setBrush(QBrush(Qt.blue, Qt.SolidPattern))
self.scene.addItem(it)
it.setPos(p)
self.items.append(it)
self.item_dict[it] = [p.__pos__().x(), p.__pos__().y()]
def undo(self, delete_item):
for key, value in self.item_dict.items():
if delete_item == value:
it = key
self.scene.removeItem(it)
del it
print("Item deleted......")
break
def wheelEvent(self, event): //Mouse wheel event to oom in and out the image
if event.angleDelta().y() > 0:
factor = 1.05
self._zoom += 1
else:
factor = 1.05
self._zoom -= 1
if self._zoom > 0:
self.gv.scale(factor, factor)
else:
self._zoom = 0
def previousImage(self):
if self.csvFlag and self.index > 0:
self.index = self.index - 1
self.csvVideo(self.rtsp_urls[self.index])
print(self.index)
elif self.imageFlag and self.index > 0:
self.index = self.index - 1
self.image_array = self.imageList[self.index]
self.cvToQImage(self.image_array)
def nextImage(self):
if self.csvFlag and self.index < len(self.rtsp_urls) - 1:
self.index = self.index + 1
self.csvVideo(self.rtsp_urls[self.index])
elif self.imageFlag and self.index < len(self.imageList):
self.index = self.index + 1
self.image_array = self.imageList[self.index]
self.cvToQImage(self.image_array)
app = QtWidgets.QApplication(sys.argv)
app.aboutToQuit.connect(app.deleteLater)
GUI = HomographyCalibration()
GUI.show()
sys.exit(app.exec_())