-
Notifications
You must be signed in to change notification settings - Fork 273
/
Copy pathjava_string_library_preprocess.cpp
1910 lines (1743 loc) · 71.3 KB
/
java_string_library_preprocess.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*******************************************************************\
Module: Java_string_libraries_preprocess, gives code for methods on
strings of the java standard library. In particular methods
from java.lang.String, java.lang.StringBuilder,
java.lang.StringBuffer.
Author: Romain Brenguier
Date: April 2017
\*******************************************************************/
/// \file
/// Java_string_libraries_preprocess, gives code for methods on strings of the
/// java standard library. In particular methods from java.lang.String,
/// java.lang.StringBuilder, java.lang.StringBuffer.
#include "java_string_library_preprocess.h"
#include <util/arith_tools.h>
#include <util/bitvector_expr.h>
#include <util/c_types.h>
#include <util/expr_initializer.h>
#include <util/floatbv_expr.h>
#include <util/ieee_float.h>
#include <util/refined_string_type.h>
#include <util/std_code.h>
#include <util/string_expr.h>
#include <util/symbol_table_base.h>
#include <goto-programs/class_identifier.h>
#include <ansi-c/allocate_objects.h>
#include "java_types.h"
#include "java_utils.h"
/// \return tag of a struct prefixed by "java::" or symbolic tag
/// empty string if not symbol or struct
static irep_idt get_tag(const typet &type)
{
/// \todo Use follow instead of assuming tag to symbol relationship.
if(type.id() == ID_struct_tag)
return to_struct_tag_type(type).get_identifier();
else if(type.id() == ID_struct)
return irep_idt("java::" + id2string(to_struct_type(type).get_tag()));
else
return irep_idt();
}
/// \param type: a type
/// \param tag: a string
/// \return Boolean telling whether the type is a struct with the given tag or a
/// symbolic type with the tag prefixed by "java::"
bool java_string_library_preprocesst::java_type_matches_tag(
const typet &type, const std::string &tag)
{
return irep_idt("java::" + tag) == get_tag(type);
}
/// \param type: a type
/// \return Boolean telling whether the type is that of java string pointer
bool java_string_library_preprocesst::is_java_string_pointer_type(
const typet &type)
{
if(type.id()==ID_pointer)
{
const pointer_typet &pt=to_pointer_type(type);
const typet &base_type = pt.base_type();
return is_java_string_type(base_type);
}
return false;
}
/// \param type: a type
/// \return Boolean telling whether the type is that of java string
bool java_string_library_preprocesst::is_java_string_type(
const typet &type)
{
return java_type_matches_tag(type, "java.lang.String");
}
/// \param type: a type
/// \return Boolean telling whether the type is that of java StringBuilder
bool java_string_library_preprocesst::is_java_string_builder_type(
const typet &type)
{
return java_type_matches_tag(type, "java.lang.StringBuilder");
}
/// \param type: a type
/// \return Boolean telling whether the type is that of java StringBuilder
/// pointers
bool java_string_library_preprocesst::is_java_string_builder_pointer_type(
const typet &type)
{
if(type.id()==ID_pointer)
{
const pointer_typet &pt=to_pointer_type(type);
const typet &base_type = pt.base_type();
return is_java_string_builder_type(base_type);
}
return false;
}
/// \param type: a type
/// \return Boolean telling whether the type is that of java StringBuffer
bool java_string_library_preprocesst::is_java_string_buffer_type(
const typet &type)
{
return java_type_matches_tag(type, "java.lang.StringBuffer");
}
/// \param type: a type
/// \return Boolean telling whether the type is that of java StringBuffer
/// pointers
bool java_string_library_preprocesst::is_java_string_buffer_pointer_type(
const typet &type)
{
if(type.id()==ID_pointer)
{
const pointer_typet &pt=to_pointer_type(type);
const typet &base_type = pt.base_type();
return is_java_string_buffer_type(base_type);
}
return false;
}
/// \param type: a type
/// \return Boolean telling whether the type is that of java char sequence
bool java_string_library_preprocesst::is_java_char_sequence_type(
const typet &type)
{
return java_type_matches_tag(type, "java.lang.CharSequence");
}
/// \param type: a type
/// \return Boolean telling whether the type is that of a pointer to a java char
/// sequence
bool java_string_library_preprocesst::is_java_char_sequence_pointer_type(
const typet &type)
{
if(type.id()==ID_pointer)
{
const pointer_typet &pt=to_pointer_type(type);
const typet &base_type = pt.base_type();
return is_java_char_sequence_type(base_type);
}
return false;
}
/// \param type: a type
/// \return Boolean telling whether the type is that of java char array
bool java_string_library_preprocesst::is_java_char_array_type(
const typet &type)
{
return java_type_matches_tag(type, "array[char]");
}
/// \par parameters: a type
/// \return Boolean telling whether the type is that of a pointer to a java char
/// array
bool java_string_library_preprocesst::is_java_char_array_pointer_type(
const typet &type)
{
if(type.id()==ID_pointer)
{
const pointer_typet &pt=to_pointer_type(type);
const typet &base_type = pt.base_type();
return is_java_char_array_type(base_type);
}
return false;
}
/// \return the type of the length field in java Strings.
static typet string_length_type()
{
return java_int_type();
}
/// Gets the base classes for known String and String-related types, or returns
/// an empty list for other types.
/// \param class_name: class identifier, without "java::" prefix.
/// \return a list of base classes, again without "java::" prefix.
std::vector<irep_idt>
java_string_library_preprocesst::get_string_type_base_classes(
const irep_idt &class_name)
{
if(!is_known_string_type(class_name))
return {};
std::vector<irep_idt> bases;
bases.reserve(3);
// StringBuilder and StringBuffer derive from AbstractStringBuilder;
// other String types (String and CharSequence) derive directly from Object.
if(
class_name == "java.lang.StringBuilder" ||
class_name == "java.lang.StringBuffer")
bases.push_back("java.lang.AbstractStringBuilder");
else
bases.push_back("java.lang.Object");
// Interfaces:
if(class_name != "java.lang.CharSequence")
{
bases.push_back("java.io.Serializable");
bases.push_back("java.lang.CharSequence");
}
if(class_name == "java.lang.String")
bases.push_back("java.lang.Comparable");
return bases;
}
/// Add to the symbol table type declaration for a String-like Java class.
/// \param class_name: a name for the class such as "java.lang.String"
/// \param symbol_table: symbol table to which the class will be added
void java_string_library_preprocesst::add_string_type(
const irep_idt &class_name,
symbol_table_baset &symbol_table)
{
irep_idt class_symbol_name = "java::" + id2string(class_name);
type_symbolt tmp_string_symbol{class_symbol_name, typet{}, ID_java};
symbolt *string_symbol = nullptr;
bool already_exists = symbol_table.move(tmp_string_symbol, string_symbol);
if(already_exists)
{
// A library has already defined this type -- we'll replace its
// components with those required for internal string modelling, but
// otherwise leave it alone.
to_java_class_type(string_symbol->type).components().clear();
}
else
{
// No definition of this type exists -- define it as it usually occurs in
// the JDK:
java_class_typet new_string_type;
new_string_type.set_tag(class_name);
new_string_type.set_name(class_symbol_name);
new_string_type.set_access(ID_public);
std::vector<irep_idt> bases = get_string_type_base_classes(class_name);
for(const irep_idt &base_name : bases)
new_string_type.add_base(
struct_tag_typet("java::" + id2string(base_name)));
string_symbol->base_name = id2string(class_name);
string_symbol->pretty_name = id2string(class_name);
string_symbol->type = new_string_type;
}
auto &string_type = to_java_class_type(string_symbol->type);
string_type.components().resize(3);
const struct_tag_typet &supertype = string_type.bases().front().type();
irep_idt supertype_component_name =
"@" + id2string(supertype.get_identifier()).substr(6);
string_type.components()[0].set_name(supertype_component_name);
string_type.components()[0].set_pretty_name(supertype_component_name);
string_type.components()[0].type() = supertype;
string_type.components()[1].set_name("length");
string_type.components()[1].set_pretty_name("length");
string_type.components()[1].type()=string_length_type();
string_type.components()[2].set_name("data");
string_type.components()[2].set_pretty_name("data");
string_type.components()[2].type() = pointer_type(java_char_type());
}
/// calls string_refine_preprocesst::process_operands with a list of parameters.
/// \param params: a list of function parameters
/// \param loc: location in the source
/// \param function_id: name of the function in which the code will be added
/// \param symbol_table: symbol table
/// \param init_code: code block, in which declaration of some arguments may be
/// added
/// \return a list of expressions
exprt::operandst java_string_library_preprocesst::process_parameters(
const java_method_typet::parameterst ¶ms,
const source_locationt &loc,
const irep_idt &function_id,
symbol_table_baset &symbol_table,
code_blockt &init_code)
{
exprt::operandst ops;
for(const auto &p : params)
ops.emplace_back(symbol_exprt(p.get_identifier(), p.type()));
return process_operands(ops, loc, function_id, symbol_table, init_code);
}
/// Creates a string_exprt from the input exprt representing a char sequence
/// \param expr_to_process: an expression of a type which implements char
/// sequence
/// \param loc: location in the source
/// \param symbol_table: symbol table
/// \param function_id: name of the function in which the code will be added
/// \param init_code: code block, in which declaration will be added:
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// char *cprover_string_content;
/// int cprover_string_length;
/// cprover_string_length = a->length;
/// cprover_string_content = a->data;
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// \return the processed operand:
/// {content=cprover_string_content, length=cprover_string_length}
refined_string_exprt
java_string_library_preprocesst::convert_exprt_to_string_exprt(
const exprt &expr_to_process,
const source_locationt &loc,
symbol_table_baset &symbol_table,
const irep_idt &function_id,
code_blockt &init_code)
{
PRECONDITION(implements_java_char_sequence_pointer(expr_to_process.type()));
const refined_string_exprt string_expr =
decl_string_expr(loc, function_id, symbol_table, init_code);
code_assign_java_string_to_string_expr(
string_expr, expr_to_process, loc, symbol_table, init_code);
return string_expr;
}
/// for each expression that is of a type implementing strings, we declare a new
/// `cprover_string` whose contents is deduced from the expression, replace
/// the expression by this cprover_string in the output list, and add an
/// assumption that the object is not null; in the other case
/// the expression is kept as is for the output list. Also does the same thing
/// for char array references.
/// \param operands: a list of expressions
/// \param loc: location in the source
/// \param function_id: name of the function in which the code will be added
/// \param symbol_table: symbol table
/// \param init_code: code block, in which declaration of some arguments may be
/// added
/// \return a list of expressions
exprt::operandst java_string_library_preprocesst::process_operands(
const exprt::operandst &operands,
const source_locationt &loc,
const irep_idt &function_id,
symbol_table_baset &symbol_table,
code_blockt &init_code)
{
exprt::operandst ops;
for(const auto &p : operands)
{
if(implements_java_char_sequence_pointer(p.type()))
{
init_code.add(code_assumet(
notequal_exprt(p, null_pointer_exprt(to_pointer_type(p.type())))));
ops.push_back(convert_exprt_to_string_exprt(
p, loc, symbol_table, function_id, init_code));
}
else if(is_java_char_array_pointer_type(p.type()))
ops.push_back(
replace_char_array(p, loc, function_id, symbol_table, init_code));
else
ops.push_back(p);
}
return ops;
}
/// Finds the type of the data component
/// \param type: a type containing a "data" component
/// \param symbol_table: symbol table
/// \return type of the "data" component
static const typet &
get_data_type(const typet &type, const symbol_table_baset &symbol_table)
{
PRECONDITION(type.id() == ID_struct || type.id() == ID_struct_tag);
if(type.id() == ID_struct_tag)
{
const symbolt &sym =
symbol_table.lookup_ref(to_struct_tag_type(type).get_identifier());
CHECK_RETURN(sym.type.id() != ID_struct_tag);
return get_data_type(sym.type, symbol_table);
}
// else type id is ID_struct
const struct_typet &struct_type=to_struct_type(type);
return struct_type.component_type("data");
}
/// Finds the type of the length component
/// \param type: a type containing a "length" component
/// \param symbol_table: symbol table
/// \return type of the "length" component
static const typet &
get_length_type(const typet &type, const symbol_table_baset &symbol_table)
{
PRECONDITION(type.id() == ID_struct || type.id() == ID_struct_tag);
if(type.id() == ID_struct_tag)
{
const symbolt &sym =
symbol_table.lookup_ref(to_struct_tag_type(type).get_identifier());
CHECK_RETURN(sym.type.id() != ID_struct_tag);
return get_length_type(sym.type, symbol_table);
}
// else type id is ID_struct
const struct_typet &struct_type=to_struct_type(type);
return struct_type.component_type("length");
}
/// access length member
/// \param expr: an expression of structured type with length component
/// \param symbol_table: symbol table
/// \return expression representing the "length" member
static exprt
get_length(const exprt &expr, const symbol_table_baset &symbol_table)
{
return member_exprt(
expr, "length", get_length_type(expr.type(), symbol_table));
}
/// access data member
/// \param expr: an expression of structured type with data component
/// \param symbol_table: symbol table
/// \return expression representing the "data" member
static exprt get_data(const exprt &expr, const symbol_table_baset &symbol_table)
{
return member_exprt(expr, "data", get_data_type(expr.type(), symbol_table));
}
/// we declare a new `cprover_string` whose contents is deduced from the char
/// array.
/// \param array_pointer: an expression of type char array pointer
/// \param loc: location in the source
/// \param function_id: name of the function in which the string is defined
/// \param symbol_table: symbol table
/// \param code: code block, in which some assignments will be added
/// \return a string expression
refined_string_exprt java_string_library_preprocesst::replace_char_array(
const exprt &array_pointer,
const source_locationt &loc,
const irep_idt &function_id,
symbol_table_baset &symbol_table,
code_blockt &code)
{
// array is *array_pointer
const dereference_exprt array = checked_dereference(array_pointer);
// array_data is array_pointer-> data
const exprt array_data = get_data(array, symbol_table);
const symbolt &sym_char_array = fresh_java_symbol(
array_data.type(), "char_array", loc, function_id, symbol_table);
const symbol_exprt char_array = sym_char_array.symbol_expr();
// char_array = array_pointer->data
code.add(code_assignt(char_array, array_data), loc);
// string_expr is `{ rhs->length; string_array }`
const refined_string_exprt string_expr(
get_length(array, symbol_table), char_array, refined_string_type);
const dereference_exprt inf_array(
char_array, array_typet(java_char_type(), infinity_exprt(java_int_type())));
add_pointer_to_array_association(
string_expr.content(), inf_array, symbol_table, loc, function_id, code);
return string_expr;
}
/// add a symbol with static lifetime and name containing `cprover_string` and
/// given type
/// \param type: a type for refined strings
/// \param loc: a location in the program
/// \param function_id: name of the function in which the code will be added
/// \param symbol_table: symbol table
/// \return a new symbol
symbol_exprt java_string_library_preprocesst::fresh_string(
const typet &type,
const source_locationt &loc,
const irep_idt &function_id,
symbol_table_baset &symbol_table)
{
symbolt string_symbol =
fresh_java_symbol(type, "cprover_string", loc, function_id, symbol_table);
string_symbol.is_static_lifetime=true;
return string_symbol.symbol_expr();
}
/// Add declaration of a refined string expr whose content and length are
/// fresh symbols.
/// \param loc: source location
/// \param function_id: name of the function in which the string is defined
/// \param symbol_table: the symbol table
/// \param [out] code: code block to which the declaration is added
/// \return refined string expr with fresh content and length symbols
refined_string_exprt java_string_library_preprocesst::decl_string_expr(
const source_locationt &loc,
const irep_idt &function_id,
symbol_table_baset &symbol_table,
code_blockt &code)
{
const symbolt &sym_length = fresh_java_symbol(
index_type, "cprover_string_length", loc, function_id, symbol_table);
const symbol_exprt length_field = sym_length.symbol_expr();
const pointer_typet array_type = pointer_type(java_char_type());
const symbolt &sym_content = fresh_java_symbol(
array_type, "cprover_string_content", loc, function_id, symbol_table);
const symbol_exprt content_field = sym_content.symbol_expr();
code.add(code_declt(content_field), loc);
code.add(code_declt{length_field}, loc);
return refined_string_exprt{length_field, content_field, refined_string_type};
}
/// add symbols with prefix cprover_string_length and cprover_string_data and
/// construct a string_expr from them.
/// \param loc: a location in the program
/// \param function_id: name of the function containing the string
/// \param symbol_table: symbol table
/// \param code: code block to which allocation instruction will be added
/// \return a new string_expr
refined_string_exprt java_string_library_preprocesst::make_nondet_string_expr(
const source_locationt &loc,
const irep_idt &function_id,
symbol_table_baset &symbol_table,
code_blockt &code)
{
/// \todo refactor with initialize_nonddet_string_struct
const refined_string_exprt str =
decl_string_expr(loc, function_id, symbol_table, code);
const side_effect_expr_nondett nondet_length(str.length().type(), loc);
code.add(code_assignt(str.length(), nondet_length), loc);
const exprt nondet_array_expr =
make_nondet_infinite_char_array(symbol_table, loc, function_id, code);
const address_of_exprt array_pointer(
index_exprt(nondet_array_expr, from_integer(0, java_int_type())));
add_pointer_to_array_association(
array_pointer, nondet_array_expr, symbol_table, loc, function_id, code);
add_array_to_length_association(
nondet_array_expr, str.length(), symbol_table, loc, function_id, code);
code.add(code_assignt(str.content(), array_pointer), loc);
return refined_string_exprt(str.length(), str.content());
}
/// declare a new String and allocate it
/// \param type: a type for string
/// \param loc: a location in the program
/// \param function_id: function the fresh string is created in
/// \param symbol_table: symbol table
/// \param code: code block to which allocation instruction will be added
/// \return a new string
exprt java_string_library_preprocesst::allocate_fresh_string(
const typet &type,
const source_locationt &loc,
const irep_idt &function_id,
symbol_table_baset &symbol_table,
code_blockt &code)
{
const exprt str = fresh_string(type, loc, function_id, symbol_table);
allocate_objectst allocate_objects(ID_java, loc, function_id, symbol_table);
code_blockt tmp;
allocate_objects.allocate_dynamic_object(
tmp, str, to_reference_type(str.type()).base_type());
allocate_objects.declare_created_symbols(code);
code.append(tmp);
return str;
}
/// assign the result of a function call
/// \param lhs: an expression
/// \param function_id: the name of the function
/// \param arguments: a list of arguments
/// \param symbol_table: a symbol table
/// \return the following code:
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// lhs = <function_id>(arguments)
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
static codet code_assign_function_application(
const exprt &lhs,
const irep_idt &function_id,
const exprt::operandst &arguments,
symbol_table_baset &symbol_table)
{
return code_assignt(
lhs,
make_function_application(
function_id, arguments, lhs.type(), symbol_table));
}
/// return the result of a function call
/// \param function_id: the name of the function
/// \param arguments: a list of arguments
/// \param type: the return type
/// \param symbol_table: a symbol table
/// \return the following code:
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// return <function_id>(arguments)
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
codet java_string_library_preprocesst::code_return_function_application(
const irep_idt &function_id,
const exprt::operandst &arguments,
const typet &type,
symbol_table_baset &symbol_table)
{
return code_returnt(
make_function_application(function_id, arguments, type, symbol_table));
}
/// Declare a fresh symbol of type array of character with infinite size.
/// \param symbol_table: the symbol table
/// \param loc: source location
/// \param function_id: name of the function containing the array
/// \param [out] code: code block where the declaration gets added
/// \return created symbol expression
exprt make_nondet_infinite_char_array(
symbol_table_baset &symbol_table,
const source_locationt &loc,
const irep_idt &function_id,
code_blockt &code)
{
const array_typet array_type(
java_char_type(), infinity_exprt(java_int_type()));
const symbolt data_sym = fresh_java_symbol(
pointer_type(array_type),
"nondet_infinite_array_pointer",
loc,
function_id,
symbol_table);
const symbol_exprt data_pointer = data_sym.symbol_expr();
code.add(code_declt(data_pointer));
code.add(make_allocate_code(data_pointer, array_type.size()));
side_effect_expr_nondett nondet_data{array_type, loc};
dereference_exprt data{data_pointer};
code.add(code_assignt{data, std::move(nondet_data)}, loc);
return std::move(data);
}
/// Add a call to a primitive of the string solver, letting it know that
/// `pointer` points to the first character of `array`.
/// \param pointer: a character pointer expression
/// \param array: a character array expression
/// \param symbol_table: the symbol table
/// \param loc: source location
/// \param function_id: name of the function in which the code will be added
/// \param [out] code: code block to which declaration and calls get added
void add_pointer_to_array_association(
const exprt &pointer,
const exprt &array,
symbol_table_baset &symbol_table,
const source_locationt &loc,
const irep_idt &function_id,
code_blockt &code)
{
PRECONDITION(array.type().id() == ID_array);
PRECONDITION(pointer.type().id() == ID_pointer);
const symbolt &return_sym = fresh_java_symbol(
java_int_type(), "return_array", loc, function_id, symbol_table);
const auto return_expr = return_sym.symbol_expr();
code.add(code_declt(return_expr), loc);
code.add(
code_assign_function_application(
return_expr,
ID_cprover_associate_array_to_pointer_func,
{array, pointer},
symbol_table),
loc);
}
/// Add a call to a primitive of the string solver, letting it know that
/// the actual length of `array` is `length`.
/// \param array: infinite size character array expression
/// \param length: integer expression
/// \param symbol_table: the symbol table
/// \param loc: source location
/// \param function_id: name of the function in which the code will be added
/// \param [out] code: code block to which declaration and calls get added
void add_array_to_length_association(
const exprt &array,
const exprt &length,
symbol_table_baset &symbol_table,
const source_locationt &loc,
const irep_idt &function_id,
code_blockt &code)
{
const symbolt &return_sym = fresh_java_symbol(
java_int_type(), "return_array", loc, function_id, symbol_table);
const auto return_expr = return_sym.symbol_expr();
code.add(code_declt(return_expr), loc);
code.add(
code_assign_function_application(
return_expr,
ID_cprover_associate_length_to_array_func,
{array, length},
symbol_table),
loc);
}
/// Add a call to a primitive of the string solver which ensures all characters
/// belong to the character set.
/// \param pointer: a character pointer expression
/// \param length: length of the character sequence pointed by `pointer`
/// \param char_range: character set given by a range expression consisting of
/// two characters separated by an hyphen. For instance "a-z" denotes all
/// lower case ascii letters.
/// \param symbol_table: the symbol table
/// \param loc: source location
/// \param function_id: the name of the function
/// \param [out] code: code block to which declaration and calls get added
void add_character_set_constraint(
const exprt &pointer,
const exprt &length,
const irep_idt &char_range,
symbol_table_baset &symbol_table,
const source_locationt &loc,
const irep_idt &function_id,
code_blockt &code)
{
PRECONDITION(pointer.type().id() == ID_pointer);
const symbolt &return_sym = fresh_java_symbol(
java_int_type(), "cnstr_added", loc, function_id, symbol_table);
const auto return_expr = return_sym.symbol_expr();
code.add(code_declt(return_expr), loc);
const constant_exprt char_set_expr(char_range, string_typet());
code.add(
code_assign_function_application(
return_expr,
ID_cprover_string_constrain_characters_func,
{length, pointer, char_set_expr},
symbol_table),
loc);
}
/// Create a refined_string_exprt `str` whose content and length are fresh
/// symbols, calls the string primitive with name `function_id`.
/// In the arguments of the primitive `str` takes the place of the result and
/// the following arguments are given by parameter `arguments.
/// \param function_id: the name of the function
/// \param arguments: arguments of the function
/// \param loc: source location
/// \param symbol_table: symbol table
/// \param [out] code: gets added the following code:
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// int return_code;
/// int str.length;
/// char str.data[str.length]
/// return_code = <function_id>(str.length, str.data, arguments)
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// \return refined string expression `str`
refined_string_exprt java_string_library_preprocesst::string_expr_of_function(
const irep_idt &function_id,
const exprt::operandst &arguments,
const source_locationt &loc,
symbol_table_baset &symbol_table,
code_blockt &code)
{
// int return_code;
const symbolt return_code_sym = fresh_java_symbol(
java_int_type(),
std::string("return_code_") + function_id.c_str(),
loc,
function_id,
symbol_table);
const auto return_code = return_code_sym.symbol_expr();
code.add(code_declt(return_code), loc);
const refined_string_exprt string_expr =
make_nondet_string_expr(loc, function_id, symbol_table, code);
// args is { str.length, str.content, arguments... }
exprt::operandst args;
args.push_back(string_expr.length());
args.push_back(string_expr.content());
args.insert(args.end(), arguments.begin(), arguments.end());
// return_code = <function_id>_data(args)
code.add(
code_assign_function_application(
return_code, function_id, args, symbol_table),
loc);
return string_expr;
}
/// Produce code for an assignment of a string expr to a Java string.
/// \param lhs: expression representing the java string to assign to
/// \param rhs_array: pointer to the array to assign
/// \param rhs_length: length of the array to assign
/// \param symbol_table: symbol table
/// \param is_constructor: the assignment happens in the context of a
/// constructor, so the whole object should be initialised, not just its
/// length and data fields.
/// \return return the following code:
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// lhs = { {Object}, length=rhs_length, data=rhs_array }
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
codet java_string_library_preprocesst::code_assign_components_to_java_string(
const exprt &lhs,
const exprt &rhs_array,
const exprt &rhs_length,
const symbol_table_baset &symbol_table,
bool is_constructor)
{
PRECONDITION(implements_java_char_sequence_pointer(lhs.type()));
dereference_exprt deref = checked_dereference(lhs);
if(is_constructor)
{
// Initialise the supertype with the appropriate classid:
namespacet ns(symbol_table);
const struct_typet &lhs_type =
ns.follow_tag(to_struct_tag_type(deref.type()));
auto zero_base_object = *zero_initializer(
lhs_type.components().front().type(), source_locationt{}, ns);
set_class_identifier(
to_struct_expr(zero_base_object), ns, to_struct_tag_type(deref.type()));
struct_exprt struct_rhs(
{zero_base_object, rhs_length, rhs_array}, deref.type());
return code_assignt(checked_dereference(lhs), struct_rhs);
}
else
{
return code_blockt(
{code_assignt(get_length(deref, symbol_table), rhs_length),
code_assignt(get_data(deref, symbol_table), rhs_array)});
}
}
/// Produce code for an assignemnt of a string expr to a Java string.
/// \param lhs: an expression representing a java string
/// \param rhs: a string expression
/// \param symbol_table: symbol table
/// \param is_constructor: the assignment happens in the context of a
/// constructor, so the whole object should be initialised, not just its
/// length and data fields.
/// \return return the following code:
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// lhs = { {Object}, length=rhs.length, data=rhs.data }
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
codet java_string_library_preprocesst::code_assign_string_expr_to_java_string(
const exprt &lhs,
const refined_string_exprt &rhs,
const symbol_table_baset &symbol_table,
bool is_constructor)
{
return code_assign_components_to_java_string(
lhs, rhs.content(), rhs.length(), symbol_table, is_constructor);
}
/// \param lhs: a string expression
/// \param rhs: an expression representing a java string
/// \param loc: source location
/// \param symbol_table: symbol table
/// \param [out] code: code block that gets appended the following code:
/// ~~~~~~~~~~~~~~~~~~~~~~
/// lhs.length = rhs==null ? 0 : rhs->length
/// lhs.data=rhs->data
/// ~~~~~~~~~~~~~~~~~~~~~~
void java_string_library_preprocesst::code_assign_java_string_to_string_expr(
const refined_string_exprt &lhs,
const exprt &rhs,
const source_locationt &loc,
const symbol_table_baset &symbol_table,
code_blockt &code)
{
PRECONDITION(implements_java_char_sequence_pointer(rhs.type()));
const dereference_exprt deref = checked_dereference(rhs);
// Although we should not reach this code if rhs is null, the association
// `pointer -> length` is added to the solver anyway, so we have to make sure
// the length is set to something reasonable.
auto rhs_length = if_exprt(
equal_exprt(rhs, null_pointer_exprt(to_pointer_type(rhs.type()))),
from_integer(0, lhs.length().type()),
get_length(deref, symbol_table));
rhs_length.set(ID_mode, ID_java);
// Assignments
code.add(code_assignt(lhs.length(), rhs_length), loc);
exprt data_as_array = get_data(deref, symbol_table);
code.add(code_assignt{lhs.content(), std::move(data_as_array)}, loc);
}
/// Create a string expression whose value is given by a literal
/// \param s: the literal to be assigned
/// \param loc: location in the source
/// \param symbol_table: symbol table
/// \param [out] code: gets added the following:
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// tmp_string = "<s>"
/// lhs = cprover_string_literal_func(tmp_string)
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// \return a new refined string
refined_string_exprt
java_string_library_preprocesst::string_literal_to_string_expr(
const std::string &s,
const source_locationt &loc,
symbol_table_baset &symbol_table,
code_blockt &code)
{
return string_expr_of_function(
ID_cprover_string_literal_func,
{constant_exprt{s, string_typet{}}},
loc,
symbol_table,
code);
}
/// Provide code for the String.valueOf(F) function.
/// \param type: type of the function call
/// \param loc: location in the program_invocation_name
/// \param function_id: function the generated code will be added to
/// \param symbol_table: symbol table
/// \param message_handler: a message handler
/// \return Code corresponding to the Java conversion of floats to strings.
code_blockt java_string_library_preprocesst::make_float_to_string_code(
const java_method_typet &type,
const source_locationt &loc,
const irep_idt &function_id,
symbol_table_baset &symbol_table,
message_handlert &message_handler)
{
(void)message_handler;
// Getting the argument
java_method_typet::parameterst params = type.parameters();
PRECONDITION(params.size()==1);
PRECONDITION(!params[0].get_identifier().empty());
const symbol_exprt arg(params[0].get_identifier(), params[0].type());
// Holder for output code
code_blockt code;
// Declaring and allocating String * str
const exprt str = allocate_fresh_string(
type.return_type(), loc, function_id, symbol_table, code);
// Expression representing 0.0
const ieee_float_spect float_spec{to_floatbv_type(params[0].type())};
ieee_float_valuet zero_float(float_spec);
zero_float.from_float(0.0);
const constant_exprt zero = zero_float.to_expr();
// For each possible case with have a condition and a string_exprt
std::vector<exprt> condition_list;
std::vector<refined_string_exprt> string_expr_list;
// Case of computerized scientific notation
condition_list.push_back(binary_relation_exprt(arg, ID_ge, zero));
const refined_string_exprt sci_notation = string_expr_of_function(
ID_cprover_string_of_float_scientific_notation_func,
{arg},
loc,
symbol_table,
code);
string_expr_list.push_back(sci_notation);
// Subcase of negative scientific notation
condition_list.push_back(binary_relation_exprt(arg, ID_lt, zero));
const refined_string_exprt minus_sign =
string_literal_to_string_expr("-", loc, symbol_table, code);
const refined_string_exprt neg_sci_notation = string_expr_of_function(
ID_cprover_string_concat_func,
{minus_sign, sci_notation},
loc,
symbol_table,
code);
string_expr_list.push_back(neg_sci_notation);
// Case of NaN
condition_list.push_back(isnan_exprt(arg));
const refined_string_exprt nan =
string_literal_to_string_expr("NaN", loc, symbol_table, code);
string_expr_list.push_back(nan);
// Case of Infinity
extractbit_exprt is_neg(arg, float_spec.width()-1);
condition_list.push_back(and_exprt(isinf_exprt(arg), not_exprt(is_neg)));
const refined_string_exprt infinity =
string_literal_to_string_expr("Infinity", loc, symbol_table, code);
string_expr_list.push_back(infinity);
// Case -Infinity
condition_list.push_back(and_exprt(isinf_exprt(arg), is_neg));
const refined_string_exprt minus_infinity =
string_literal_to_string_expr("-Infinity", loc, symbol_table, code);
string_expr_list.push_back(minus_infinity);
// Case of 0.0
// Note: for zeros we must use equal_exprt and not ieee_float_equal_exprt,
// the latter disregards the sign
condition_list.push_back(equal_exprt(arg, zero));
const refined_string_exprt zero_string =
string_literal_to_string_expr("0.0", loc, symbol_table, code);
string_expr_list.push_back(zero_string);
// Case of -0.0
ieee_float_valuet minus_zero_float(float_spec);
minus_zero_float.from_float(-0.0f);