-
Notifications
You must be signed in to change notification settings - Fork 273
/
Copy pathinterval_domain.cpp
523 lines (464 loc) · 13.6 KB
/
interval_domain.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*******************************************************************\
Module: Interval Domain
Author: Daniel Kroening, [email protected]
\*******************************************************************/
/// \file
/// Interval Domain
#include "interval_domain.h"
#ifdef DEBUG
#include <iostream>
#include <langapi/language_util.h>
#endif
#include <util/simplify_expr.h>
#include <util/std_expr.h>
#include <util/arith_tools.h>
void interval_domaint::output(
std::ostream &out,
const ai_baset &,
const namespacet &) const
{
if(bottom)
{
out << "BOTTOM\n";
return;
}
for(const auto &interval : int_map)
{
if(interval.second.is_top())
continue;
if(interval.second.lower_set)
out << interval.second.lower << " <= ";
out << interval.first;
if(interval.second.upper_set)
out << " <= " << interval.second.upper;
out << "\n";
}
for(const auto &interval : float_map)
{
if(interval.second.is_top())
continue;
if(interval.second.lower_set)
out << interval.second.lower << " <= ";
out << interval.first;
if(interval.second.upper_set)
out << " <= " << interval.second.upper;
out << "\n";
}
}
void interval_domaint::transform(
const irep_idt &function_from,
trace_ptrt trace_from,
const irep_idt &function_to,
trace_ptrt trace_to,
ai_baset &ai,
const namespacet &ns)
{
locationt from{trace_from->current_location()};
locationt to{trace_to->current_location()};
const goto_programt::instructiont &instruction=*from;
switch(instruction.type())
{
case DECL:
havoc_rec(instruction.decl_symbol());
break;
case DEAD:
havoc_rec(instruction.dead_symbol());
break;
case ASSIGN:
assign(instruction.assign_lhs(), instruction.assign_rhs());
break;
case GOTO:
{
// Comparing iterators is safe as the target must be within the same list
// of instructions because this is a GOTO.
locationt next = from;
next++;
if(from->get_target() != next) // If equal then a skip
{
if(next == to)
assume(not_exprt(instruction.condition()), ns);
else
assume(instruction.condition(), ns);
}
break;
}
case ASSUME:
assume(instruction.condition(), ns);
break;
case FUNCTION_CALL:
{
const auto &lhs = instruction.call_lhs();
if(lhs.is_not_nil())
havoc_rec(lhs);
break;
}
case CATCH:
case THROW:
DATA_INVARIANT(false, "Exceptions must be removed before analysis");
break;
case SET_RETURN_VALUE:
DATA_INVARIANT(false, "SET_RETURN_VALUE must be removed before analysis");
break;
case ATOMIC_BEGIN: // Ignoring is a valid over-approximation
case ATOMIC_END: // Ignoring is a valid over-approximation
case END_FUNCTION: // No action required
case START_THREAD: // Require a concurrent analysis at higher level
case END_THREAD: // Require a concurrent analysis at higher level
case ASSERT: // No action required
case LOCATION: // No action required
case SKIP: // No action required
break;
case OTHER:
#if 0
DATA_INVARIANT(false, "Unclear what is a safe over-approximation of OTHER");
#endif
break;
case INCOMPLETE_GOTO:
case NO_INSTRUCTION_TYPE:
DATA_INVARIANT(false, "Only complete instructions can be analyzed");
break;
}
}
/// Sets *this to the mathematical join between the two domains. This can be
/// thought of as an abstract version of union; *this is increased so that it
/// contains all of the values that are represented by b as well as its original
/// intervals. The result is an overapproximation, for example:
/// "[0,1]".join("[3,4]") --> "[0,4]" includes 2 which isn't in [0,1] or [3,4].
///
/// Join is used in several places, the most significant being
/// merge, which uses it to bring together two different paths
/// of analysis.
/// \par parameters: The interval domain, b, to join to this domain.
/// \return True if the join increases the set represented by *this, False if
/// there is no change.
bool interval_domaint::join(
const interval_domaint &b)
{
if(b.bottom)
return false;
if(bottom)
{
*this=b;
return true;
}
bool result=false;
for(int_mapt::iterator it=int_map.begin();
it!=int_map.end(); ) // no it++
{
// search for the variable that needs to be merged
// containers have different size and variable order
const int_mapt::const_iterator b_it=b.int_map.find(it->first);
if(b_it==b.int_map.end())
{
it=int_map.erase(it);
result=true;
}
else
{
integer_intervalt previous=it->second;
it->second.join(b_it->second);
if(it->second!=previous)
result=true;
it++;
}
}
for(float_mapt::iterator it=float_map.begin();
it!=float_map.end(); ) // no it++
{
const float_mapt::const_iterator b_it=b.float_map.begin();
if(b_it==b.float_map.end())
{
it=float_map.erase(it);
result=true;
}
else
{
ieee_float_intervalt previous=it->second;
it->second.join(b_it->second);
if(it->second!=previous)
result=true;
it++;
}
}
return result;
}
void interval_domaint::assign(const exprt &lhs, const exprt &rhs)
{
havoc_rec(lhs);
assume_rec(lhs, ID_equal, rhs);
}
void interval_domaint::havoc_rec(const exprt &lhs)
{
if(lhs.id()==ID_if)
{
havoc_rec(to_if_expr(lhs).true_case());
havoc_rec(to_if_expr(lhs).false_case());
}
else if(lhs.id()==ID_symbol)
{
irep_idt identifier=to_symbol_expr(lhs).get_identifier();
if(is_int(lhs.type()))
int_map.erase(identifier);
else if(is_float(lhs.type()))
float_map.erase(identifier);
}
else if(lhs.id()==ID_typecast)
{
havoc_rec(to_typecast_expr(lhs).op());
}
}
void interval_domaint::assume_rec(
const exprt &lhs, irep_idt id, const exprt &rhs)
{
if(lhs.id()==ID_typecast)
return assume_rec(to_typecast_expr(lhs).op(), id, rhs);
if(rhs.id()==ID_typecast)
return assume_rec(lhs, id, to_typecast_expr(rhs).op());
if(id==ID_equal)
{
assume_rec(lhs, ID_ge, rhs);
assume_rec(lhs, ID_le, rhs);
return;
}
if(id==ID_notequal)
return; // won't do split
if(id==ID_ge)
return assume_rec(rhs, ID_le, lhs);
if(id==ID_gt)
return assume_rec(rhs, ID_lt, lhs);
// we now have lhs < rhs or
// lhs <= rhs
DATA_INVARIANT(id == ID_lt || id == ID_le, "unexpected comparison operator");
#ifdef DEBUG
std::cout << "assume_rec: "
<< from_expr(lhs) << " " << id << " "
<< from_expr(rhs) << "\n";
#endif
if(lhs.id() == ID_symbol && rhs.is_constant())
{
irep_idt lhs_identifier=to_symbol_expr(lhs).get_identifier();
if(is_int(lhs.type()) && is_int(rhs.type()))
{
mp_integer tmp = numeric_cast_v<mp_integer>(to_constant_expr(rhs));
if(id==ID_lt)
--tmp;
integer_intervalt &ii=int_map[lhs_identifier];
ii.make_le_than(tmp);
if(ii.is_bottom())
make_bottom();
}
else if(is_float(lhs.type()) && is_float(rhs.type()))
{
ieee_float_valuet tmp(to_constant_expr(rhs));
if(id==ID_lt)
tmp.decrement();
ieee_float_intervalt &fi=float_map[lhs_identifier];
fi.make_le_than(tmp);
if(fi.is_bottom())
make_bottom();
}
}
else if(lhs.is_constant() && rhs.id() == ID_symbol)
{
irep_idt rhs_identifier=to_symbol_expr(rhs).get_identifier();
if(is_int(lhs.type()) && is_int(rhs.type()))
{
mp_integer tmp = numeric_cast_v<mp_integer>(to_constant_expr(lhs));
if(id==ID_lt)
++tmp;
integer_intervalt &ii=int_map[rhs_identifier];
ii.make_ge_than(tmp);
if(ii.is_bottom())
make_bottom();
}
else if(is_float(lhs.type()) && is_float(rhs.type()))
{
ieee_float_valuet tmp(to_constant_expr(lhs));
if(id==ID_lt)
tmp.increment();
ieee_float_intervalt &fi=float_map[rhs_identifier];
fi.make_ge_than(tmp);
if(fi.is_bottom())
make_bottom();
}
}
else if(lhs.id()==ID_symbol && rhs.id()==ID_symbol)
{
irep_idt lhs_identifier=to_symbol_expr(lhs).get_identifier();
irep_idt rhs_identifier=to_symbol_expr(rhs).get_identifier();
if(is_int(lhs.type()) && is_int(rhs.type()))
{
integer_intervalt &lhs_i=int_map[lhs_identifier];
integer_intervalt &rhs_i=int_map[rhs_identifier];
if(id == ID_lt && !lhs_i.is_less_than(rhs_i))
lhs_i.make_less_than(rhs_i);
if(id == ID_le && !lhs_i.is_less_than_eq(rhs_i))
lhs_i.make_less_than_eq(rhs_i);
}
else if(is_float(lhs.type()) && is_float(rhs.type()))
{
ieee_float_intervalt &lhs_i=float_map[lhs_identifier];
ieee_float_intervalt &rhs_i=float_map[rhs_identifier];
lhs_i.meet(rhs_i);
rhs_i=lhs_i;
if(rhs_i.is_bottom())
make_bottom();
}
}
}
void interval_domaint::assume(
const exprt &cond,
const namespacet &ns)
{
assume_rec(simplify_expr(cond, ns), false);
}
void interval_domaint::assume_rec(
const exprt &cond,
bool negation)
{
if(cond.id()==ID_lt || cond.id()==ID_le ||
cond.id()==ID_gt || cond.id()==ID_ge ||
cond.id()==ID_equal || cond.id()==ID_notequal)
{
const auto &rel = to_binary_relation_expr(cond);
if(negation) // !x<y ---> x>=y
{
if(rel.id() == ID_lt)
assume_rec(rel.op0(), ID_ge, rel.op1());
else if(rel.id() == ID_le)
assume_rec(rel.op0(), ID_gt, rel.op1());
else if(rel.id() == ID_gt)
assume_rec(rel.op0(), ID_le, rel.op1());
else if(rel.id() == ID_ge)
assume_rec(rel.op0(), ID_lt, rel.op1());
else if(rel.id() == ID_equal)
assume_rec(rel.op0(), ID_notequal, rel.op1());
else if(rel.id() == ID_notequal)
assume_rec(rel.op0(), ID_equal, rel.op1());
}
else
assume_rec(rel.op0(), rel.id(), rel.op1());
}
else if(cond.id()==ID_not)
{
assume_rec(to_not_expr(cond).op(), !negation);
}
else if(cond.id()==ID_and)
{
if(!negation)
{
for(const auto &op : cond.operands())
assume_rec(op, false);
}
}
else if(cond.id()==ID_or)
{
if(negation)
{
for(const auto &op : cond.operands())
assume_rec(op, true);
}
}
}
exprt interval_domaint::make_expression(const symbol_exprt &src) const
{
if(is_int(src.type()))
{
int_mapt::const_iterator i_it=int_map.find(src.get_identifier());
if(i_it==int_map.end())
return true_exprt();
const integer_intervalt &interval=i_it->second;
if(interval.is_top())
return true_exprt();
if(interval.is_bottom())
return false_exprt();
exprt::operandst conjuncts;
if(interval.upper_set)
{
exprt tmp=from_integer(interval.upper, src.type());
conjuncts.push_back(binary_relation_exprt(src, ID_le, tmp));
}
if(interval.lower_set)
{
exprt tmp=from_integer(interval.lower, src.type());
conjuncts.push_back(binary_relation_exprt(tmp, ID_le, src));
}
return conjunction(conjuncts);
}
else if(is_float(src.type()))
{
float_mapt::const_iterator i_it=float_map.find(src.get_identifier());
if(i_it==float_map.end())
return true_exprt();
const ieee_float_intervalt &interval=i_it->second;
if(interval.is_top())
return true_exprt();
if(interval.is_bottom())
return false_exprt();
exprt::operandst conjuncts;
if(interval.upper_set)
{
exprt tmp=interval.upper.to_expr();
conjuncts.push_back(binary_relation_exprt(src, ID_le, tmp));
}
if(interval.lower_set)
{
exprt tmp=interval.lower.to_expr();
conjuncts.push_back(binary_relation_exprt(tmp, ID_le, src));
}
return conjunction(conjuncts);
}
else
return true_exprt();
}
/// Uses the abstract state to simplify a given expression using context-
/// specific information.
/// \par parameters: The expression to simplify.
/// \return A simplified version of the expression.
/*
* This implementation is aimed at reducing assertions to true, particularly
* range checks for arrays and other bounds checks.
*
* Rather than work with the various kinds of exprt directly, we use assume,
* join and is_bottom. It is sufficient for the use case and avoids duplicating
* functionality that is in assume anyway.
*
* As some expressions (1<=a && a<=2) can be represented exactly as intervals
* and some can't (a<1 || a>2), the way these operations are used varies
* depending on the structure of the expression to try to give the best results.
* For example negating a disjunction makes it easier for assume to handle.
*/
bool interval_domaint::ai_simplify(
exprt &condition,
const namespacet &ns) const
{
bool unchanged=true;
interval_domaint d(*this);
// merge intervals to properly handle conjunction
if(condition.id()==ID_and) // May be directly representable
{
interval_domaint a;
a.make_top(); // a is everything
a.assume(condition, ns); // Restrict a to an over-approximation
// of when condition is true
if(!a.join(d)) // If d (this) is included in a...
{ // Then the condition is always true
unchanged=condition.is_true();
condition = true_exprt();
}
}
else if(condition.id()==ID_symbol)
{
// TODO: we have to handle symbol expression
}
else // Less likely to be representable
{
d.assume(not_exprt(condition), ns); // Restrict to when condition is false
if(d.is_bottom()) // If there there are none...
{ // Then the condition is always true
unchanged=condition.is_true();
condition = true_exprt();
}
}
return unchanged;
}