-
Notifications
You must be signed in to change notification settings - Fork 273
/
Copy pathinterpreter.cpp
1071 lines (934 loc) · 28.2 KB
/
interpreter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*******************************************************************\
Module: Interpreter for GOTO Programs
Author: Daniel Kroening, [email protected]
\*******************************************************************/
/// \file
/// Interpreter for GOTO Programs
#include "interpreter.h"
#include "interpreter_class.h"
#include <util/c_types.h>
#include <util/fixedbv.h>
#include <util/ieee_float.h>
#include <util/invariant.h>
#include <util/mathematical_types.h>
#include <util/message.h>
#include <util/pointer_expr.h>
#include <util/std_code.h>
#include <util/std_expr.h>
#include <util/string2int.h>
#include <util/string_container.h>
#include "goto_model.h"
#include "json_goto_trace.h"
#include <algorithm>
#include <cctype>
#include <climits>
#include <cstdio>
#include <fstream>
const std::size_t interpretert::npos=std::numeric_limits<size_t>::max();
void interpretert::operator()()
{
output.status() << "0- Initialize:" << messaget::eom;
initialize(true);
try
{
output.status() << "Type h for help\n" << messaget::eom;
while(!done)
command();
output.status() << total_steps << "- Program End.\n" << messaget::eom;
}
catch (const char *e)
{
output.error() << e << "\n" << messaget::eom;
}
while(!done)
command();
}
/// Initializes the memory map of the interpreter and [optionally] runs up to
/// the entry point (thus doing the cprover initialization)
void interpretert::initialize(bool init)
{
build_memory_map();
// reset the call stack
call_stack = call_stackt{};
total_steps=0;
const goto_functionst::function_mapt::const_iterator
main_it=goto_functions.function_map.find(goto_functionst::entry_point());
if(main_it==goto_functions.function_map.end())
throw "main not found";
const goto_functionst::goto_functiont &goto_function=main_it->second;
if(!goto_function.body_available())
throw "main has no body";
pc=goto_function.body.instructions.begin();
function=main_it;
done=false;
if(init)
{
// execute instructions up to and including __CPROVER_initialize()
while(!done && call_stack.size() == 0)
{
show_state();
step();
}
// initialization
while(!done && call_stack.size() > 0)
{
show_state();
step();
}
// invoke the user entry point
while(!done && call_stack.size() == 0)
{
show_state();
step();
}
clear_input_flags();
input_vars.clear();
}
}
/// displays the current position of the pc and corresponding code
void interpretert::show_state()
{
if(!show)
return;
output.status() << "\n"
<< total_steps + 1
<< " ----------------------------------------------------\n";
if(pc==function->second.body.instructions.end())
{
output.status() << "End of function '" << function->first << "'\n";
}
else
pc->output(output.status());
output.status() << messaget::eom;
}
/// reads a user command and executes it.
void interpretert::command()
{
#define BUFSIZE 100
char command[BUFSIZE];
if(fgets(command, BUFSIZE-1, stdin)==nullptr)
{
done=true;
return;
}
char ch=tolower(command[0]);
if(ch=='q')
done=true;
else if(ch=='h')
{
output.status() << "Interpreter help\n"
<< "h: display this menu\n"
<< "j: output json trace\n"
<< "m: output memory dump\n"
<< "o: output goto trace\n"
<< "q: quit\n"
<< "r: run up to entry point\n"
<< "s#: step a number of instructions\n"
<< "sa: step across a function\n"
<< "so: step out of a function\n"
<< "se: step until end of program\n"
<< messaget::eom;
}
else if(ch=='j')
{
json_arrayt json_steps;
convert<json_arrayt>(ns, steps, json_steps);
ch=tolower(command[1]);
if(ch==' ')
{
std::ofstream file;
file.open(command+2);
if(file.is_open())
{
json_steps.output(file);
file.close();
return;
}
}
json_steps.output(output.result());
}
else if(ch=='m')
{
ch=tolower(command[1]);
print_memory(ch=='i');
}
else if(ch=='o')
{
ch=tolower(command[1]);
if(ch==' ')
{
std::ofstream file;
file.open(command+2);
if(file.is_open())
{
steps.output(ns, file);
file.close();
return;
}
}
steps.output(ns, output.result());
}
else if(ch=='r')
{
ch=tolower(command[1]);
initialize(ch!='0');
}
else if((ch=='s') || (ch==0))
{
num_steps=1;
std::size_t stack_depth = npos;
ch=tolower(command[1]);
if(ch=='e')
num_steps=npos;
else if(ch=='o')
stack_depth=call_stack.size();
else if(ch=='a')
stack_depth=call_stack.size()+1;
else
{
num_steps = unsafe_string2size_t(command + 1);
if(num_steps==0)
num_steps=1;
}
while(!done && ((num_steps==npos) || ((num_steps--)>0)))
{
step();
show_state();
}
while(!done && (stack_depth<=call_stack.size()) && (stack_depth!=npos))
{
step();
show_state();
}
return;
}
show_state();
}
/// executes a single step and updates the program counter
void interpretert::step()
{
total_steps++;
if(pc==function->second.body.instructions.end())
{
if(call_stack.empty())
done=true;
else
{
pc=call_stack.top().return_pc;
function=call_stack.top().return_function;
// TODO: this increases memory size quite quickly.
// Should check alternatives
call_stack.pop();
}
return;
}
next_pc=pc;
next_pc++;
steps.add_step(goto_trace_stept());
goto_trace_stept &trace_step=steps.get_last_step();
trace_step.thread_nr=thread_id;
trace_step.pc=pc;
switch(pc->type())
{
case GOTO:
trace_step.type=goto_trace_stept::typet::GOTO;
execute_goto();
break;
case ASSUME:
trace_step.type=goto_trace_stept::typet::ASSUME;
execute_assume();
break;
case ASSERT:
trace_step.type=goto_trace_stept::typet::ASSERT;
execute_assert();
break;
case OTHER:
execute_other();
break;
case DECL:
trace_step.type=goto_trace_stept::typet::DECL;
execute_decl();
break;
case SKIP:
case LOCATION:
trace_step.type=goto_trace_stept::typet::LOCATION;
break;
case END_FUNCTION:
trace_step.type=goto_trace_stept::typet::FUNCTION_RETURN;
break;
case SET_RETURN_VALUE:
trace_step.type=goto_trace_stept::typet::FUNCTION_RETURN;
if(call_stack.empty())
throw "SET_RETURN_VALUE without call"; // NOLINT(readability/throw)
if(call_stack.top().return_value_address != 0)
{
mp_vectort rhs = evaluate(pc->return_value());
assign(call_stack.top().return_value_address, rhs);
}
next_pc=function->second.body.instructions.end();
break;
case ASSIGN:
trace_step.type=goto_trace_stept::typet::ASSIGNMENT;
execute_assign();
break;
case FUNCTION_CALL:
trace_step.type=goto_trace_stept::typet::FUNCTION_CALL;
execute_function_call();
break;
case START_THREAD:
trace_step.type=goto_trace_stept::typet::SPAWN;
throw "START_THREAD not yet implemented"; // NOLINT(readability/throw)
case END_THREAD:
throw "END_THREAD not yet implemented"; // NOLINT(readability/throw)
break;
case ATOMIC_BEGIN:
trace_step.type=goto_trace_stept::typet::ATOMIC_BEGIN;
throw "ATOMIC_BEGIN not yet implemented"; // NOLINT(readability/throw)
case ATOMIC_END:
trace_step.type=goto_trace_stept::typet::ATOMIC_END;
throw "ATOMIC_END not yet implemented"; // NOLINT(readability/throw)
case DEAD:
trace_step.type=goto_trace_stept::typet::DEAD;
break;
case THROW:
trace_step.type=goto_trace_stept::typet::GOTO;
while(!done && (pc->type() != CATCH))
{
if(pc==function->second.body.instructions.end())
{
if(call_stack.empty())
done=true;
else
{
pc=call_stack.top().return_pc;
function=call_stack.top().return_function;
call_stack.pop();
}
}
else
{
next_pc=pc;
next_pc++;
}
}
break;
case CATCH:
break;
case INCOMPLETE_GOTO:
case NO_INSTRUCTION_TYPE:
throw "encountered instruction with undefined instruction type";
}
pc=next_pc;
}
/// executes a goto instruction
void interpretert::execute_goto()
{
if(evaluate_boolean(pc->condition()))
{
if(pc->targets.empty())
throw "taken goto without target";
if(pc->targets.size()>=2)
throw "non-deterministic goto encountered";
next_pc=pc->targets.front();
}
}
/// executes side effects of 'other' instructions
void interpretert::execute_other()
{
const irep_idt &statement = pc->get_other().get_statement();
if(statement==ID_expression)
{
DATA_INVARIANT(
pc->code().operands().size() == 1,
"expression statement expected to have one operand");
mp_vectort rhs = evaluate(pc->code().op0());
}
else if(statement==ID_array_set)
{
mp_vectort tmp = evaluate(pc->code().op1());
mp_integer address = evaluate_address(pc->code().op0());
mp_integer size = get_size(pc->code().op0().type());
mp_vectort rhs;
while(rhs.size()<size) rhs.insert(rhs.end(), tmp.begin(), tmp.end());
if(size!=rhs.size())
output.error() << "!! failed to obtain rhs (" << rhs.size() << " vs. "
<< size << ")\n"
<< messaget::eom;
else
{
assign(address, rhs);
}
}
else if(can_cast_expr<code_outputt>(pc->get_other()))
{
return;
}
else
throw "unexpected OTHER statement: "+id2string(statement);
}
void interpretert::execute_decl()
{
PRECONDITION(pc->code().get_statement() == ID_decl);
}
/// Retrieves the member at \p offset of an object of type \p object_type.
struct_typet::componentt
interpretert::get_component(const typet &object_type, const mp_integer &offset)
{
if(object_type.id() != ID_struct_tag)
throw "request for member of non-struct";
const struct_typet &struct_type =
ns.follow_tag(to_struct_tag_type(object_type));
const struct_typet::componentst &components=struct_type.components();
mp_integer tmp_offset=offset;
for(const auto &c : components)
{
if(tmp_offset<=0)
return c;
tmp_offset-=get_size(c.type());
}
throw "access out of struct bounds";
}
/// returns the type object corresponding to id
typet interpretert::get_type(const irep_idt &id) const
{
dynamic_typest::const_iterator it=dynamic_types.find(id);
if(it==dynamic_types.end())
return symbol_table.lookup_ref(id).type;
return it->second;
}
/// retrives the constant value at memory location offset as an object of type
/// type
exprt interpretert::get_value(
const typet &type,
const mp_integer &offset,
bool use_non_det)
{
if(type.id() == ID_struct_tag)
{
struct_exprt result({}, type);
const struct_typet &struct_type = ns.follow_tag(to_struct_tag_type(type));
const struct_typet::componentst &components=struct_type.components();
// Retrieve the values for the individual members
result.reserve_operands(components.size());
mp_integer tmp_offset=offset;
for(const auto &c : components)
{
mp_integer size=get_size(c.type());
const exprt operand=get_value(c.type(), tmp_offset);
tmp_offset+=size;
result.copy_to_operands(operand);
}
return std::move(result);
}
else if(type.id() == ID_array)
{
// Get size of array
array_exprt result({}, to_array_type(type));
const exprt &size_expr = to_array_type(type).size();
mp_integer subtype_size = get_size(to_array_type(type).element_type());
mp_integer count;
if(!size_expr.is_constant())
{
count=base_address_to_actual_size(offset)/subtype_size;
}
else
{
count = numeric_cast_v<mp_integer>(to_constant_expr(size_expr));
}
// Retrieve the value for each member in the array
result.reserve_operands(numeric_cast_v<std::size_t>(count));
for(mp_integer i=0; i<count; ++i)
{
const exprt operand = get_value(
to_array_type(type).element_type(), offset + i * subtype_size);
result.copy_to_operands(operand);
}
return std::move(result);
}
if(
use_non_det && memory[numeric_cast_v<std::size_t>(offset)].initialized !=
memory_cellt::initializedt::WRITTEN_BEFORE_READ)
{
return side_effect_expr_nondett(type, source_locationt());
}
mp_vectort rhs;
rhs.push_back(memory[numeric_cast_v<std::size_t>(offset)].value);
return get_value(type, rhs);
}
/// returns the value at offset in the form of type given a memory buffer rhs
/// which is typically a structured type
exprt interpretert::get_value(
const typet &type,
mp_vectort &rhs,
const mp_integer &offset)
{
PRECONDITION(!rhs.empty());
if(type.id() == ID_struct_tag)
{
struct_exprt result({}, type);
const struct_typet &struct_type = ns.follow_tag(to_struct_tag_type(type));
const struct_typet::componentst &components=struct_type.components();
// Retrieve the values for the individual members
result.reserve_operands(components.size());
mp_integer tmp_offset=offset;
for(const struct_union_typet::componentt &expr : components)
{
mp_integer size=get_size(expr.type());
const exprt operand=get_value(expr.type(), rhs, tmp_offset);
tmp_offset+=size;
result.copy_to_operands(operand);
}
return std::move(result);
}
else if(type.id() == ID_array)
{
array_exprt result({}, to_array_type(type));
const exprt &size_expr = to_array_type(type).size();
// Get size of array
mp_integer subtype_size = get_size(to_array_type(type).element_type());
mp_integer count;
if(unbounded_size(type))
{
count=base_address_to_actual_size(offset)/subtype_size;
}
else
{
count = numeric_cast_v<mp_integer>(to_constant_expr(size_expr));
}
// Retrieve the value for each member in the array
result.reserve_operands(numeric_cast_v<std::size_t>(count));
for(mp_integer i=0; i<count; ++i)
{
const exprt operand = get_value(
to_array_type(type).element_type(), rhs, offset + i * subtype_size);
result.copy_to_operands(operand);
}
return std::move(result);
}
else if(type.id() == ID_floatbv)
{
ieee_float_valuet f(to_floatbv_type(type));
f.unpack(rhs[numeric_cast_v<std::size_t>(offset)]);
return f.to_expr();
}
else if(type.id() == ID_fixedbv)
{
fixedbvt f;
f.from_integer(rhs[numeric_cast_v<std::size_t>(offset)]);
return f.to_expr();
}
else if(type.id() == ID_bool)
{
if(rhs[numeric_cast_v<std::size_t>(offset)] != 0)
return true_exprt();
else
false_exprt();
}
else if(type.id() == ID_c_bool)
{
return from_integer(
rhs[numeric_cast_v<std::size_t>(offset)] != 0 ? 1 : 0, type);
}
else if(type.id() == ID_pointer)
{
if(rhs[numeric_cast_v<std::size_t>(offset)] == 0)
return null_pointer_exprt(to_pointer_type(type)); // NULL pointer
if(rhs[numeric_cast_v<std::size_t>(offset)] < memory.size())
{
// We want the symbol pointed to
mp_integer address = rhs[numeric_cast_v<std::size_t>(offset)];
const symbol_exprt symbol_expr = address_to_symbol(address);
mp_integer offset_from_address = address_to_offset(address);
if(offset_from_address == 0)
return address_of_exprt(symbol_expr);
if(
symbol_expr.type().id() == ID_struct ||
symbol_expr.type().id() == ID_struct_tag)
{
const auto c = get_component(symbol_expr.type(), offset_from_address);
member_exprt member_expr(symbol_expr, c);
return address_of_exprt(member_expr);
}
return index_exprt(
symbol_expr, from_integer(offset_from_address, integer_typet()));
}
output.error() << "interpreter: invalid pointer "
<< rhs[numeric_cast_v<std::size_t>(offset)]
<< " > object count " << memory.size() << messaget::eom;
throw "interpreter: reading from invalid pointer";
}
else if(type.id() == ID_string)
{
// Strings are currently encoded by their irep_idt ID.
return constant_exprt(
get_string_container().get_string(
numeric_cast_v<std::size_t>(rhs[numeric_cast_v<std::size_t>(offset)])),
type);
}
// Retrieve value of basic data type
return from_integer(rhs[numeric_cast_v<std::size_t>(offset)], type);
}
/// executes the assign statement at the current pc value
void interpretert::execute_assign()
{
const exprt &assign_lhs = pc->assign_lhs();
const exprt &assign_rhs = pc->assign_rhs();
mp_vectort rhs = evaluate(assign_rhs);
if(!rhs.empty())
{
mp_integer address = evaluate_address(assign_lhs);
mp_integer size = get_size(assign_lhs.type());
if(size!=rhs.size())
output.error() << "!! failed to obtain rhs (" << rhs.size() << " vs. "
<< size << ")\n"
<< messaget::eom;
else
{
goto_trace_stept &trace_step=steps.get_last_step();
assign(address, rhs);
trace_step.full_lhs = assign_lhs;
trace_step.full_lhs_value=get_value(trace_step.full_lhs.type(), rhs);
}
}
else if(assign_rhs.id() == ID_side_effect)
{
side_effect_exprt side_effect = to_side_effect_expr(assign_rhs);
if(side_effect.get_statement()==ID_nondet)
{
mp_integer address =
numeric_cast_v<std::size_t>(evaluate_address(assign_lhs));
mp_integer size = get_size(assign_lhs.type());
for(mp_integer i=0; i<size; ++i)
{
memory[numeric_cast_v<std::size_t>(address + i)].initialized =
memory_cellt::initializedt::READ_BEFORE_WRITTEN;
}
}
}
}
/// sets the memory at address with the given rhs value (up to sizeof(rhs))
void interpretert::assign(
const mp_integer &address,
const mp_vectort &rhs)
{
for(mp_integer i=0; i<rhs.size(); ++i)
{
if((address+i)<memory.size())
{
mp_integer address_val=address+i;
memory_cellt &cell = memory[numeric_cast_v<std::size_t>(address_val)];
if(show)
{
output.status() << total_steps << " ** assigning "
<< address_to_symbol(address_val).get_identifier()
<< "[" << address_to_offset(address_val)
<< "]:=" << rhs[numeric_cast_v<std::size_t>(i)] << "\n"
<< messaget::eom;
}
cell.value = rhs[numeric_cast_v<std::size_t>(i)];
if(cell.initialized==memory_cellt::initializedt::UNKNOWN)
cell.initialized=memory_cellt::initializedt::WRITTEN_BEFORE_READ;
}
}
}
void interpretert::execute_assume()
{
if(!evaluate_boolean(pc->condition()))
throw "assumption failed";
}
void interpretert::execute_assert()
{
if(!evaluate_boolean(pc->condition()))
{
if(show)
output.error() << "assertion failed at " << pc->location_number << "\n"
<< messaget::eom;
}
}
void interpretert::execute_function_call()
{
const auto &call_lhs = pc->call_lhs();
const auto &call_function = pc->call_function();
const auto &call_arguments = pc->call_arguments();
// function to be called
mp_integer address = evaluate_address(call_function);
if(address==0)
throw "function call to NULL";
else if(address>=memory.size())
throw "out-of-range function call";
// Retrieve the empty last trace step struct we pushed for this step
// of the interpreter run to fill it with the corresponding data
goto_trace_stept &trace_step=steps.get_last_step();
#if 0
const memory_cellt &cell=memory[address];
#endif
const irep_idt identifier = address_to_symbol(address).get_identifier();
trace_step.called_function = identifier;
const goto_functionst::function_mapt::const_iterator f_it=
goto_functions.function_map.find(identifier);
if(f_it==goto_functions.function_map.end())
throw "failed to find function "+id2string(identifier);
// return value
mp_integer return_value_address;
if(call_lhs.is_not_nil())
return_value_address = evaluate_address(call_lhs);
else
return_value_address=0;
// values of the arguments
std::vector<mp_vectort> argument_values;
argument_values.resize(call_arguments.size());
for(std::size_t i = 0; i < call_arguments.size(); i++)
argument_values[i] = evaluate(call_arguments[i]);
// do the call
if(f_it->second.body_available())
{
call_stack.push(stack_framet());
stack_framet &frame=call_stack.top();
frame.return_pc=next_pc;
frame.return_function=function;
frame.old_stack_pointer=stack_pointer;
frame.return_value_address=return_value_address;
// local variables
std::set<irep_idt> locals;
get_local_identifiers(f_it->second, locals);
for(const auto &id : locals)
{
const symbolt &symbol=ns.lookup(id);
frame.local_map[id] = build_memory_map(symbol.symbol_expr());
}
// assign the arguments
const auto ¶meter_identifiers = f_it->second.parameter_identifiers;
if(argument_values.size() < parameter_identifiers.size())
throw "not enough arguments";
for(std::size_t i = 0; i < parameter_identifiers.size(); i++)
{
const symbol_exprt symbol_expr =
ns.lookup(parameter_identifiers[i]).symbol_expr();
assign(evaluate_address(symbol_expr), argument_values[i]);
}
// set up new pc
function=f_it;
next_pc=f_it->second.body.instructions.begin();
}
else
{
list_input_varst::iterator it =
function_input_vars.find(to_symbol_expr(call_function).get_identifier());
if(it!=function_input_vars.end())
{
PRECONDITION(!it->second.empty());
PRECONDITION(!it->second.front().return_assignments.empty());
mp_vectort value =
evaluate(it->second.front().return_assignments.back().value);
if(return_value_address>0)
{
assign(return_value_address, value);
}
it->second.pop_front();
return;
}
if(show)
output.error() << "no body for " << identifier << messaget::eom;
}
}
/// Creates a memory map of all static symbols in the program
void interpretert::build_memory_map()
{
// put in a dummy for NULL
memory.clear();
memory.resize(1);
inverse_memory_map[0] = {};
num_dynamic_objects=0;
dynamic_types.clear();
// now do regular static symbols
for(const auto &s : symbol_table.symbols)
build_memory_map(s.second);
// for the locals
stack_pointer=memory.size();
}
void interpretert::build_memory_map(const symbolt &symbol)
{
mp_integer size=0;
if(symbol.type.id()==ID_code)
{
size=1;
}
else if(symbol.is_static_lifetime)
{
size=get_size(symbol.type);
}
if(size!=0)
{
mp_integer address=memory.size();
memory.resize(numeric_cast_v<std::size_t>(address + size));
memory_map[symbol.name]=address;
inverse_memory_map[address] = symbol.symbol_expr();
}
}
/// turns a variable length array type into a fixed array type
typet interpretert::concretize_type(const typet &type)
{
if(type.id()==ID_array)
{
const exprt &size_expr = to_array_type(type).size();
mp_vectort computed_size = evaluate(size_expr);
if(computed_size.size()==1 &&
computed_size[0]>=0)
{
output.result() << "Concretized array with size " << computed_size[0]
<< messaget::eom;
return array_typet(
to_array_type(type).element_type(),
from_integer(computed_size[0], integer_typet()));
}
else
{
output.warning() << "Failed to concretize variable array"
<< messaget::eom;
}
}
return type;
}
/// Populates dynamic entries of the memory map
/// \return Updates the memory map to include variable id if it does not exist
mp_integer interpretert::build_memory_map(const symbol_exprt &symbol_expr)
{
typet alloc_type = concretize_type(symbol_expr.type());
mp_integer size=get_size(alloc_type);
auto it = dynamic_types.find(symbol_expr.get_identifier());
if(it!=dynamic_types.end())
{
mp_integer address = memory_map[symbol_expr.get_identifier()];
mp_integer current_size=base_address_to_alloc_size(address);
// current size <= size already recorded
if(size<=current_size)
return memory_map[symbol_expr.get_identifier()];
}
// The current size is bigger then the one previously recorded
// in the memory map
if(size==0)
size=1; // This is a hack to create existence
mp_integer address=memory.size();
memory.resize(numeric_cast_v<std::size_t>(address + size));
memory_map[symbol_expr.get_identifier()] = address;
inverse_memory_map[address] = symbol_expr;
dynamic_types.insert(
std::pair<const irep_idt, typet>(symbol_expr.get_identifier(), alloc_type));
return address;
}
bool interpretert::unbounded_size(const typet &type)
{
if(type.id()==ID_array)
{
const exprt &size=to_array_type(type).size();
if(size.id()==ID_infinity)
return true;
return unbounded_size(to_array_type(type).element_type());
}
else if(type.id()==ID_struct)
{
const auto &st=to_struct_type(type);
if(st.components().empty())
return false;
return unbounded_size(st.components().back().type());
}
return false;
}
/// Retrieves the actual size of the provided structured type. Unbounded objects
/// get allocated 2^(platform bit-width / 2 + 1) address space each.
/// \param type: a structured type
/// \return Size of the given type
mp_integer interpretert::get_size(const typet &type)
{
if(unbounded_size(type))
return mp_integer(2) << (sizeof(std::size_t) * CHAR_BIT / 2);
if(type.id()==ID_struct)
{
const struct_typet::componentst &components=
to_struct_type(type).components();
mp_integer sum=0;
for(const auto &comp : components)
{
DATA_INVARIANT(
comp.type().id() != ID_code, "struct member must not be of code type");
sum += get_size(comp.type());
}
return sum;
}
else if(type.id()==ID_union)
{
const union_typet::componentst &components=
to_union_type(type).components();
mp_integer max_size=0;
for(const auto &comp : components)
{
DATA_INVARIANT(
comp.type().id() != ID_code, "union member must not be of code type");
max_size = std::max(max_size, get_size(comp.type()));
}
return max_size;
}
else if(type.id()==ID_array)