-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathfitNi.py
107 lines (85 loc) · 3.39 KB
/
fitNi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
# We'll need numpy and matplotlib for plotting our results
import numpy as np
import matplotlib.pyplot as plt
# A least squares fitting algorithm from scipy
from scipy.optimize.minpack import leastsq
# DiffPy-CMI modules for building a fitting recipe
from diffpy.Structure import loadStructure
from diffpy.srfit.pdf import PDFContribution
from diffpy.srfit.fitbase import FitRecipe, FitResults
# Files containing our experimental data and structure file
dataFile = "ni-q27r100-neutron.gr"
structureFile = "ni.cif"
spaceGroup = "Fm-3m"
# The first thing to construct is a contribution. Since this is a simple
# example, the contribution will simply contain our PDF data and an associated
# structure file. We'll give it the name "nickel"
niPDF = PDFContribution("nickel")
# Load the data and set the r-range over which we'll fit
niPDF.loadData(dataFile)
niPDF.setCalculationRange(xmin=1, xmax=20, dx=0.01)
# Add the structure from our cif file to the contribution
niStructure = loadStructure(structureFile)
niPDF.addStructure("nickel", niStructure)
# The FitRecipe does the work of calculating the PDF with the fit variable
# that we give it.
niFit = FitRecipe()
# give the PDFContribution to the FitRecipe
niFit.addContribution(niPDF)
# Configure the fit variables and give them to the recipe. We can use the
# srfit function constrainAsSpaceGroup to constrain the lattice and ADP
# parameters according to the Fm-3m space group.
from diffpy.srfit.structure import constrainAsSpaceGroup
spaceGroupParams = constrainAsSpaceGroup(niPDF.nickel.phase, spaceGroup)
print("Space group parameters are:",
', '.join(p.name for p in spaceGroupParams))
print()
# We can now cycle through the parameters and activate them in the recipe as
# variables
for par in spaceGroupParams.latpars:
niFit.addVar(par)
# Set initial value for the ADP parameters, because CIF had no ADP data.
for par in spaceGroupParams.adppars:
niFit.addVar(par, value=0.005)
# As usual, we add variables for the overall scale of the PDF and a delta2
# parameter for correlated motion of neighboring atoms.
niFit.addVar(niPDF.scale, 1)
niFit.addVar(niPDF.nickel.delta2, 5)
# We fix Qdamp based on prior information about our beamline.
niFit.addVar(niPDF.qdamp, 0.03, fixed=True)
# Turn off printout of iteration number.
niFit.clearFitHooks()
# We can now execute the fit using scipy's least square optimizer.
print("Refine PDF using scipy's least-squares optimizer:")
print(" variables:", niFit.names)
print(" initial values:", niFit.values)
leastsq(niFit.residual, niFit.values)
print(" final values:", niFit.values)
print()
# Obtain and display the fit results.
niResults = FitResults(niFit)
print("FIT RESULTS\n")
print(niResults)
# Plot the observed and refined PDF.
# Get the experimental data from the recipe
r = niFit.nickel.profile.x
gobs = niFit.nickel.profile.y
# Get the calculated PDF and compute the difference between the calculated and
# measured PDF
gcalc = niFit.nickel.evaluate()
baseline = 1.1 * gobs.min()
gdiff = gobs - gcalc
# Plot!
plt.figure()
plt.plot(r, gobs, 'bo', label="G(r) data",
markerfacecolor='none', markeredgecolor='b')
plt.plot(r, gcalc, 'r-', label="G(r) fit")
plt.plot(r, gdiff + baseline, 'g-', label="G(r) diff")
plt.plot(r, np.zeros_like(r) + baseline, 'k:')
plt.xlabel(r"r ($\AA$)")
plt.ylabel(r"G ($\AA^{-2}$)")
plt.legend()
plt.show()