|
| 1 | +.. _Functions Example: |
| 2 | + |
| 3 | +:tocdepth: -1 |
| 4 | + |
| 5 | +Functions Example |
| 6 | +################# |
| 7 | + |
| 8 | +This example will demonstrate how to use ``diffpy.labpdfproc.functions`` module independently |
| 9 | +to apply absorption correction to your 1D diffraction data. |
| 10 | + |
| 11 | +1. First, you will need to prepare and load your input diffraction data. |
| 12 | +For example, if you want to load data from ``zro2_mo.xy`` in the ``example_data`` directory, you can write: |
| 13 | + |
| 14 | +.. code-block:: python |
| 15 | +
|
| 16 | + from diffpy.utils.parsers.loaddata import loadData |
| 17 | + from diffpy.utils.diffraction_objects import DiffractionObject |
| 18 | +
|
| 19 | + filepath = "../example_data/zro2_mo.xy" |
| 20 | + xarray, yarray = loadData(filepath, unpack=True) |
| 21 | + input_pattern = DiffractionObject( |
| 22 | + xarray=xarray, |
| 23 | + yarray=yarray, |
| 24 | + xtype="tth", |
| 25 | + wavelength=0.7, |
| 26 | + scat_quantity="x-ray", |
| 27 | + name="input diffraction data", |
| 28 | + metadata={"beamline": "28ID-2"}, |
| 29 | + ) |
| 30 | +
|
| 31 | +For the full tutorial, please refer to https://www.diffpy.org/diffpy.utils/examples/diffraction_objects_example.html. |
| 32 | + |
| 33 | +2. Assume you have created your ``input_pattern`` and specified mu*D value as ``muD`` (e.g., ``muD=2``). |
| 34 | +You can now compute the absorption correction (cve) for the given mu*D using the ``compute_cve`` function, |
| 35 | +apply it to your input pattern, and save the corrected file. |
| 36 | + |
| 37 | +.. code-block:: python |
| 38 | +
|
| 39 | + from diffpy.labpdfproc.functions import apply_corr, compute_cve |
| 40 | + absorption_correction = compute_cve(input_pattern, muD) # compute cve, default method is "polynomial_interpolation" |
| 41 | + corrected_pattern = apply_corr(input_pattern, absorption_correction) # apply cve correction |
| 42 | + corrected_data.dump("corrected pattern.chi", xtype="tth") # save the corrected pattern |
| 43 | +
|
| 44 | +If you want to use brute-force computation instead, you can replace the first line with: |
| 45 | + |
| 46 | +.. code-block:: python |
| 47 | +
|
| 48 | + absorption_correction = compute_cve(input_pattern, muD, method="brute_force") |
| 49 | +
|
| 50 | +3. Now, you can visualize the effect of the absorption correction |
| 51 | +by plotting the original and corrected diffraction patterns. |
| 52 | + |
| 53 | +.. code-block:: python |
| 54 | +
|
| 55 | + import matplotlib.pyplot as plt |
| 56 | + plt.plot(input_pattern.xarray, input_pattern.yarray, label="Original Intensity") |
| 57 | + plt.plot(corrected_pattern.xarray, corrected_pattern.yarray, label="Corrected Intensity") |
| 58 | + plt.xlabel("tth (degrees)") |
| 59 | + plt.ylabel("Intensity") |
| 60 | + plt.legend() |
| 61 | + plt.title("Original vs. Corrected Intensity") |
| 62 | + plt.show() |
| 63 | +
|
| 64 | +4. You can modify the global parameters |
| 65 | +``N_POINTS_ON_DIAMETER`` (the number of points on each diameter to sample the circle) |
| 66 | +and ``TTH_GRID`` (the range of angles) when using the brute-force method. |
| 67 | + |
| 68 | +To speed up computation, you can reduce the range of ``TTH_GRID``. You can also increase ``N_POINTS_ON_DIAMETER`` |
| 69 | +for better accuracy, but keep in mind that this will increase computation time. |
| 70 | +For optimal results, we recommend setting it to an even number. |
| 71 | + |
| 72 | +Currently, the interpolation coefficients were computed using ``N_POINTS_ON_DIAMETER=2000``, |
| 73 | +which ensures good accuracy within the mu*D range of 0.5 to 6. |
| 74 | +This value also provides flexibility if we decide to extend the interpolation range in the future. |
0 commit comments