10
10
RADIUS_MM = 1
11
11
N_POINTS_ON_DIAMETER = 300
12
12
TTH_GRID = np .arange (1 , 180.1 , 0.1 )
13
- # Round down the last element if it's slightly above 180 due to floating point precision
13
+ # Round down the last element if it's slightly above 180.00
14
+ # due to floating point precision
14
15
TTH_GRID [- 1 ] = 180.00
15
16
CVE_METHODS = ["brute_force" , "polynomial_interpolation" ]
16
17
17
18
# Pre-computed datasets for polynomial interpolation (fast calculation)
18
19
MUD_LIST = [0.5 , 1 , 2 , 3 , 4 , 5 , 6 ]
19
20
CWD = Path (__file__ ).parent .resolve ()
20
21
MULS = np .loadtxt (CWD / "data" / "inverse_cve.xy" )
21
- COEFFICIENT_LIST = np .array (pd .read_csv (CWD / "data" / "coefficient_list.csv" , header = None ))
22
- INTERPOLATION_FUNCTIONS = [interp1d (MUD_LIST , coefficients , kind = "quadratic" ) for coefficients in COEFFICIENT_LIST ]
22
+ COEFFICIENT_LIST = np .array (
23
+ pd .read_csv (CWD / "data" / "coefficient_list.csv" , header = None )
24
+ )
25
+ INTERPOLATION_FUNCTIONS = [
26
+ interp1d (MUD_LIST , coeffs , kind = "quadratic" ) for coeffs in COEFFICIENT_LIST
27
+ ]
23
28
24
29
25
30
class Gridded_circle :
26
- def __init__ (self , radius = 1 , n_points_on_diameter = N_POINTS_ON_DIAMETER , mu = None ):
31
+ def __init__ (
32
+ self , radius = 1 , n_points_on_diameter = N_POINTS_ON_DIAMETER , mu = None
33
+ ):
27
34
self .radius = radius
28
35
self .npoints = n_points_on_diameter
29
36
self .mu = mu
@@ -32,17 +39,23 @@ def __init__(self, radius=1, n_points_on_diameter=N_POINTS_ON_DIAMETER, mu=None)
32
39
self ._get_grid_points ()
33
40
34
41
def _get_grid_points (self ):
35
- """Given a radius and a grid size, return a grid of points to uniformly sample that circle."""
42
+ """Given a radius and a grid size,
43
+ return a grid of points to uniformly sample that circle."""
36
44
xs = np .linspace (- self .radius , self .radius , self .npoints )
37
45
ys = np .linspace (- self .radius , self .radius , self .npoints )
38
- self .grid = {(x , y ) for x in xs for y in ys if x ** 2 + y ** 2 <= self .radius ** 2 }
46
+ self .grid = {
47
+ (x , y ) for x in xs for y in ys if x ** 2 + y ** 2 <= self .radius ** 2
48
+ }
39
49
self .total_points_in_grid = len (self .grid )
40
50
41
51
def _get_entry_exit_coordinates (self , coordinate , angle ):
42
- """Get the coordinates where the beam enters and leaves the circle for a given angle and grid point.
52
+ """Get the coordinates where the beam enters and leaves the circle
53
+ for a given angle and grid point.
43
54
44
55
It is calculated in the following way:
45
- For the entry coordinate, the y-component will be the y of the grid point and the x-component will be minus
56
+ For the entry coordinate,
57
+ the y-component will be the y of the grid point
58
+ and the x-component will be minus
46
59
the value of x on the circle at the height of this y.
47
60
48
61
For the exit coordinate:
@@ -53,7 +66,8 @@ def _get_entry_exit_coordinates(self, coordinate, angle):
53
66
x^2 + (ax+b)^2 = r^2
54
67
=> x^2 + a^2x^2 + 2abx + b^2 - r^2 = 0
55
68
=> (1+a^2) x^2 + 2abx + (b^2 - r^2) = 0
56
- to find x_exit we find the roots of these equations and pick the root that is above y-grid
69
+ to find x_exit we find the roots of these equations
70
+ and pick the root that is above y-grid
57
71
then we get y_exit from y_exit = a*x_exit + b.
58
72
59
73
Parameters
@@ -67,8 +81,10 @@ def _get_entry_exit_coordinates(self, coordinate, angle):
67
81
Returns
68
82
-------
69
83
(entry_point, exit_point): tuple of floats
70
- (1) The coordinate of the entry point and (2) of the exit point of a beam entering horizontally
71
- impinging on a coordinate point that lies in the circle and then exiting at some angle, angle.
84
+ (1) The coordinate of the entry point and
85
+ (2) of the exit point of a beam entering horizontally
86
+ impinging on a coordinate point that lies in the circle
87
+ and then exiting at some angle, angle.
72
88
"""
73
89
epsilon = 1e-7 # precision close to 90
74
90
angle = math .radians (angle )
@@ -80,7 +96,9 @@ def _get_entry_exit_coordinates(self, coordinate, angle):
80
96
if not math .isclose (angle , math .pi / 2 , abs_tol = epsilon ):
81
97
b = ygrid - xgrid * math .tan (angle )
82
98
a = math .tan (angle )
83
- xexit_root1 , xexit_root2 = np .roots ((1 + a ** 2 , 2 * a * b , b ** 2 - self .radius ** 2 ))
99
+ xexit_root1 , xexit_root2 = np .roots (
100
+ (1 + a ** 2 , 2 * a * b , b ** 2 - self .radius ** 2 )
101
+ )
84
102
yexit_root1 = a * xexit_root1 + b
85
103
yexit_root2 = a * xexit_root2 + b
86
104
if yexit_root2 >= yexit_root1 : # We pick the point above
@@ -93,8 +111,9 @@ def _get_entry_exit_coordinates(self, coordinate, angle):
93
111
return entry_point , exit_point
94
112
95
113
def _get_path_length (self , grid_point , angle ):
96
- """Return the path length of a horizontal line entering the circle at the
97
- same height to the grid point then exiting at angle.
114
+ """Return the path length of
115
+ a horizontal line entering the circle at the same height
116
+ to the grid point then exiting at angle.
98
117
99
118
Parameters
100
119
----------
@@ -107,10 +126,12 @@ def _get_path_length(self, grid_point, angle):
107
126
Returns
108
127
-------
109
128
(total distance, primary distance, secondary distance): tuple of floats
110
- The tuple containing three floats, which are the total distance, entry distance and exit distance.
129
+ The tuple containing three floats,
130
+ which are the total distance, entry distance and exit distance.
111
131
"""
112
132
113
- # move angle a tad above zero if it is zero to avoid it having the wrong sign due to some rounding error
133
+ # move angle a tad above zero if it is zero
134
+ # to avoid it having the wrong sign due to some rounding error
114
135
angle_delta = 0.000001
115
136
if angle == float (0 ):
116
137
angle = angle + angle_delta
@@ -121,14 +142,17 @@ def _get_path_length(self, grid_point, angle):
121
142
return total_distance , primary_distance , secondary_distance
122
143
123
144
def set_distances_at_angle (self , angle ):
124
- """Given an angle, set the distances from the grid points to the entry and exit coordinates.
145
+ """Given an angle, set the distances from the grid points
146
+ to the entry and exit coordinates.
125
147
126
148
Parameters
127
149
----------
128
150
angle : float
129
151
The angle of the output beam in degrees.
130
152
"""
131
- self .primary_distances , self .secondary_distances , self .distances = [], [], []
153
+ self .primary_distances = []
154
+ self .secondary_distances = []
155
+ self .distances = []
132
156
for coord in self .grid :
133
157
distance , primary , secondary = self ._get_path_length (coord , angle )
134
158
self .distances .append (distance )
@@ -152,7 +176,8 @@ def set_muls_at_angle(self, angle):
152
176
153
177
154
178
def _cve_brute_force (input_pattern , mud ):
155
- """Compute cve for the given mud on a global grid using the brute-force method.
179
+ """Compute cve for the given mud on a global grid
180
+ using the brute-force method.
156
181
Assume mu=mud/2, given that the same mu*D yields the same cve and D/2=1.
157
182
"""
158
183
mu_sample_invmm = mud / 2
@@ -185,13 +210,22 @@ def _cve_polynomial_interpolation(input_pattern, mud):
185
210
"""
186
211
if mud > 6 or mud < 0.5 :
187
212
raise ValueError (
188
- f"mu*D is out of the acceptable range (0.5 to 6) for polynomial interpolation. "
189
- f"Please rerun with a value within this range or specifying another method from { * CVE_METHODS , } ."
213
+ f"mu*D is out of the acceptable range (0.5 to 6) "
214
+ f"for polynomial interpolation. "
215
+ f"Please rerun with a value within this range "
216
+ f"or specifying another method from { * CVE_METHODS , } ."
190
217
)
191
218
coeff_a , coeff_b , coeff_c , coeff_d , coeff_e = [
192
- interpolation_function (mud ) for interpolation_function in INTERPOLATION_FUNCTIONS
219
+ interpolation_function (mud )
220
+ for interpolation_function in INTERPOLATION_FUNCTIONS
193
221
]
194
- muls = np .array (coeff_a * MULS ** 4 + coeff_b * MULS ** 3 + coeff_c * MULS ** 2 + coeff_d * MULS + coeff_e )
222
+ muls = np .array (
223
+ coeff_a * MULS ** 4
224
+ + coeff_b * MULS ** 3
225
+ + coeff_c * MULS ** 2
226
+ + coeff_d * MULS
227
+ + coeff_e
228
+ )
195
229
cve = 1 / muls
196
230
197
231
cve_do = DiffractionObject (
@@ -213,21 +247,30 @@ def _cve_method(method):
213
247
"polynomial_interpolation" : _cve_polynomial_interpolation ,
214
248
}
215
249
if method not in CVE_METHODS :
216
- raise ValueError (f"Unknown method: { method } . Allowed methods are { * CVE_METHODS , } ." )
250
+ raise ValueError (
251
+ f"Unknown method: { method } . "
252
+ f"Allowed methods are { * CVE_METHODS , } ."
253
+ )
217
254
return methods [method ]
218
255
219
256
220
- def compute_cve (input_pattern , mud , method = "polynomial_interpolation" , xtype = "tth" ):
221
- f"""Compute and interpolate the cve for the given input diffraction data and mu*D using the selected method.
257
+ def compute_cve (
258
+ input_pattern , mud , method = "polynomial_interpolation" , xtype = "tth"
259
+ ):
260
+ f"""Compute and interpolate the cve
261
+ for the given input diffraction data and mu*D
262
+ using the selected method.
222
263
223
264
Parameters
224
265
----------
225
266
input_pattern : DiffractionObject
226
267
The input diffraction object to which the cve will be applied.
227
268
mud : float
228
- The mu*D value of the diffraction object, where D is the diameter of the circle.
269
+ The mu*D value of the diffraction object,
270
+ where D is the diameter of the circle.
229
271
xtype : str
230
- The quantity on the independent variable axis, allowed values are { * XQUANTITIES , } .
272
+ The quantity on the independent variable axis,
273
+ allowed values are { * XQUANTITIES , } .
231
274
method : str
232
275
The method used to calculate cve, must be one of { * CVE_METHODS , } .
233
276
@@ -255,7 +298,8 @@ def compute_cve(input_pattern, mud, method="polynomial_interpolation", xtype="tt
255
298
256
299
257
300
def apply_corr (input_pattern , absorption_correction ):
258
- """Apply absorption correction to the given diffraction object with the correction diffraction object.
301
+ """Apply absorption correction to the given diffraction object
302
+ with the correction diffraction object.
259
303
260
304
Parameters
261
305
----------
@@ -267,7 +311,8 @@ def apply_corr(input_pattern, absorption_correction):
267
311
Returns
268
312
-------
269
313
corrected_pattern: DiffractionObject
270
- The corrected diffraction object with the correction applied through multiplication.
314
+ The corrected diffraction object
315
+ with the correction applied through multiplication.
271
316
"""
272
317
corrected_pattern = input_pattern * absorption_correction
273
318
return corrected_pattern
0 commit comments