@@ -156,7 +156,7 @@ it has not been extensively tested beyond the PDF.
156
156
It runs on Windows, Mac OS, Linux, and all major Unix systems.
157
157
The source code is freely available at @url {https://github.com/diffpy/diffpy.pdfmorph }.
158
158
159
- If you come accross any bugs in the application, please open an
159
+ If you come across any bugs in the application, please open an
160
160
@url {https://github.com/diffpy/diffpy.pdfmorph/issues , issue } or email
161
161
diffpy-dev@@ googlegroups.com.
162
162
@@ -440,8 +440,8 @@ extra tutorial data @code{additionalData.zip}} before proceeding.
440
440
@cindex performing multiple morphs
441
441
442
442
It may be useful to morph a PDF against multiple targets: for example, you may want
443
- to morph a PDF against a sequence of PDFs measured at various temepratures to determine
444
- whether a phase change has occured . PDFmorph currently allows users to morph a PDF
443
+ to morph a PDF against a sequence of PDFs measured at various temperatures to determine
444
+ whether a phase change has occurred . PDFmorph currently allows users to morph a PDF
445
445
against all files in a selected directory and plot resulting @math {R_W } values from each morph.
446
446
It is advised that the lowest temperature PDF be that morphed and the higher temperature PDFs
447
447
act as targets as the smear morph is only able to account for increases in thermal motion.
@@ -619,15 +619,15 @@ Again, we can begin by plotting the bulk material against our nanoparticle.
619
619
@example
620
620
pdfmorph Ni_bulk.gr Ni_nano_spheroid.cgr
621
621
@end example
622
- @item The nanoparticle shape of the calculated PDF is an oblate spheroid with equitorial
622
+ @item The nanoparticle shape of the calculated PDF is an oblate spheroid with equatorial
623
623
radius of about @math {12 } and polar radius of about @math {6 } (this information is contained
624
624
within the @code {Ni_nano_spheroid.cgr } file). To apply the spheroidal shape effects onto the
625
625
bulk, run
626
626
@example
627
627
pdfmorph Ni_bulk.gr Ni_nano_spheroid.cgr -- radius=12 -- pradius=6 -a
628
628
@end example
629
629
@itemize
630
- @item The @code {--radius } option corresponds to the equitorial radius.
630
+ @item The @code {--radius } option corresponds to the equatorial radius.
631
631
@item The @code {--pradius } option corresponds to the polar radius.
632
632
@end itemize
633
633
@item Run the same command without @code {-a } to refine. Refining should give
@@ -792,24 +792,24 @@ using atomic pair distribution function analysis. Phys. Rev. B, 76(11), 115413.
792
792
The available shape morphs are listed below:
793
793
@itemize
794
794
@item @code {--radius=RADIUS } - Multiply the PDF by the nanoparticle form factor for a sphere of radius @code {RADIUS }.
795
- If used with @code {--pradius }, multiply the PDF by the nanoparticle form factor for a spheroid of equitorial radius
795
+ If used with @code {--pradius }, multiply the PDF by the nanoparticle form factor for a spheroid of equatorial radius
796
796
@code {RADIUS } and polar radius @code {PRADIUS }.
797
797
@itemize
798
798
@item The sphere form factor was computed by Kodama et al. @footnote {Kodama , K. , Iikubo , S. , Taguchi , T. , &
799
799
Shamoto , S. (2006). Finite size effects of nanoparticles on the atomic pair distribution functions.
800
800
Acta Crystallographica Section A , 62(6) , 444–453. @url {https://doi.org/10.1107/S0108767306034635 }}.
801
801
@end itemize
802
- @item @code {--pradius=PRADIUS } - Multiply the PDF by the nanoparticle form factor for a spheroid of equitorial radius
802
+ @item @code {--pradius=PRADIUS } - Multiply the PDF by the nanoparticle form factor for a spheroid of equatorial radius
803
803
@code {RADIUS } and polar radius @code {PRADIUS }.
804
804
@itemize
805
805
@item The spheroid form factor was computed by Lei et al. @footnote {Lei , M. , de Graff , A. M. R. , Thorpe , M. F. , Wells ,
806
806
S. A. , & Sartbaeva , A. (2009). Uncovering the intrinsic geometry from the atomic pair distribution function of
807
807
nanomaterials. Phys. Rev. B , 80(2) , 024118. @url {https://doi.org/10.1103/PhysRevB.80.024118 }}.
808
808
@end itemize
809
809
@item @code {--iradius=IRADIUS } - Divide the PDF by the nanoparticle form factor for a sphere of radius @code {IRADIUS }.
810
- If used with @code {--ipradius }, divide the PDF by the nanoparticle form factor for a spheroid of equitorial radius
810
+ If used with @code {--ipradius }, divide the PDF by the nanoparticle form factor for a spheroid of equatorial radius
811
811
@code {IRADIUS } and polar radius @code {IPRADIUS }.
812
- @item @code {--ipradius=IPRADIUS } - Divide the PDF by the nanoparticle form factor for a spheroid of equitorial radius
812
+ @item @code {--ipradius=IPRADIUS } - Divide the PDF by the nanoparticle form factor for a spheroid of equatorial radius
813
813
@code {IRADIUS } and polar radius @code {IPRADIUS }.
814
814
@end itemize
815
815
@@ -842,7 +842,7 @@ post-expansion. The volume of the nanoparticle also increases by a factor @math{
842
842
@displaymath
843
843
\gamma'_0(\vec{r}) = {1 \over {\alpha^3 V}} \int \int \int s'(\vec{r}')s'(\vec{r}'+\vec{r})d\vec{r}'.
844
844
@end displaymath
845
- Aplying a change of variables @math {\vec {r }' \rightarrow \vec{r}' / \alpha} gives
845
+ Applying a change of variables @math {\vec {r }' \rightarrow \vec{r}' / \alpha} gives
846
846
@displaymath
847
847
\gamma'_0(\vec{r}) = {1 \over {\alpha^3 V}} \int \int \int s'(\alpha \vec{r}')s'(\alpha \vec{r}'+\vec{r})\alpha^3d\vec{r}',
848
848
@end displaymath
@@ -963,7 +963,7 @@ requires us to apply a Gaussian dampening envelope centered at @math{r=0} with w
963
963
@noindent @code {--radius=RADIUS }
964
964
@* @indent Apply the nanoparticle form factor @math {\gamma_0 } for a sphere of radius @code {RADIUS }.
965
965
If @code {PRADIUS } is also specified, instead apply the characteristic function of a spheroid with
966
- equitorial radius @code {RADIUS } and polar radius @code {PRADIUS }.
966
+ equatorial radius @code {RADIUS } and polar radius @code {PRADIUS }.
967
967
968
968
@noindent @code {--pradius=PRADIUS }
969
969
@* @indent If @code {RADIUS } is also specified, see @code {--radius }. Otherwise, apply the characteristic
@@ -972,7 +972,7 @@ function of a sphere with radius @code{PRADIUS}.
972
972
@noindent @code {--iradius=IRADIUS }
973
973
@* @indent Apply the inverse characteristic function @math {1/\gamma_0 } of a sphere of radius @code {IRADIUS }/
974
974
If @code {IPRADIUS } is also specified, instead apply the characteristic function of a spheroid with
975
- equitorial radius @code {IRADIUS } and polar radius @code {PRADIUS }.
975
+ equatorial radius @code {IRADIUS } and polar radius @code {PRADIUS }.
976
976
977
977
@noindent @code {--ipradius=IPRADIUS }
978
978
@* @indent If @code {IRADIUS } is also specified, see @code {--iradius }. Otherwise, apply the characteristic
0 commit comments