diff --git a/.flake8 b/.flake8 new file mode 100644 index 0000000..076b992 --- /dev/null +++ b/.flake8 @@ -0,0 +1,11 @@ +[flake8] +exclude = + .git, + __pycache__, + build, + dist, + doc/source/conf.py +max-line-length = 115 +# Ignore some style 'errors' produced while formatting by 'black' +# https://black.readthedocs.io/en/stable/guides/using_black_with_other_tools.html#labels-why-pycodestyle-warnings +extend-ignore = E203 \ No newline at end of file diff --git a/diffpy/snmf/__init__.py b/diffpy/snmf/__init__.py index 0fd5168..9e9f1b6 100644 --- a/diffpy/snmf/__init__.py +++ b/diffpy/snmf/__init__.py @@ -17,9 +17,9 @@ """ # obtain version information -__version__ = '0.0.1' +__version__ = "0.0.1" # top-level import -#from diffpy.snmf.pdfmorph_api import pdfmorph, morph_default_config, plot_morph +# from diffpy.snmf.pdfmorph_api import pdfmorph, morph_default_config, plot_morph # End of file diff --git a/diffpy/snmf/containers.py b/diffpy/snmf/containers.py index e25b8d5..947b07a 100644 --- a/diffpy/snmf/containers.py +++ b/diffpy/snmf/containers.py @@ -40,8 +40,9 @@ def apply_stretch(self, m): stretching operation, and one vector is the second derivative of the stretching operation. """ normalized_grid = np.arange(len(self.grid)) - func = lambda stretching_factor: np.interp(normalized_grid / stretching_factor, normalized_grid, self.iq, - left=0, right=0) + func = lambda stretching_factor: np.interp( + normalized_grid / stretching_factor, normalized_grid, self.iq, left=0, right=0 + ) derivative_func = numdifftools.Derivative(func) second_derivative_func = numdifftools.Derivative(derivative_func) @@ -49,8 +50,11 @@ def apply_stretch(self, m): stretched_component_gra = derivative_func(self.stretching_factors[m]) stretched_component_hess = second_derivative_func(self.stretching_factors[m]) - return np.asarray(stretched_component), np.asarray(stretched_component_gra), np.asarray( - stretched_component_hess) + return ( + np.asarray(stretched_component), + np.asarray(stretched_component_gra), + np.asarray(stretched_component_hess), + ) def apply_weight(self, m, stretched_component=None): """Applies as weight factor to a component signal. diff --git a/diffpy/snmf/io.py b/diffpy/snmf/io.py index 6063569..7132d70 100644 --- a/diffpy/snmf/io.py +++ b/diffpy/snmf/io.py @@ -42,11 +42,21 @@ def initialize_variables(data_input, number_of_components, data_type, sparsity=1 signal_length = data_input.shape[0] number_of_signals = data_input.shape[1] - diagonals = [np.ones(number_of_signals - 2), -2 * np.ones(number_of_signals - 2), np.ones(number_of_signals - 2)] - smoothness_term = .25 * scipy.sparse.diags(diagonals, [0, 1, 2], shape=(number_of_signals - 2, number_of_signals)) + diagonals = [ + np.ones(number_of_signals - 2), + -2 * np.ones(number_of_signals - 2), + np.ones(number_of_signals - 2), + ] + smoothness_term = 0.25 * scipy.sparse.diags( + diagonals, [0, 1, 2], shape=(number_of_signals - 2, number_of_signals) + ) hessian_helper_matrix = scipy.sparse.block_diag([smoothness_term.T @ smoothness_term] * number_of_components) - sequence = np.arange(number_of_signals * number_of_components).reshape(number_of_components, number_of_signals).T.flatten() + sequence = ( + np.arange(number_of_signals * number_of_components) + .reshape(number_of_components, number_of_signals) + .T.flatten() + ) hessian_helper_matrix = hessian_helper_matrix[sequence, :][:, sequence] return { @@ -57,7 +67,7 @@ def initialize_variables(data_input, number_of_components, data_type, sparsity=1 "smoothness": smoothness, "sparsity": sparsity, "smoothness_term": smoothness_term, - "hessian_helper_matrix": hessian_helper_matrix + "hessian_helper_matrix": hessian_helper_matrix, } diff --git a/diffpy/snmf/optimizers.py b/diffpy/snmf/optimizers.py index 722c102..8c94c58 100644 --- a/diffpy/snmf/optimizers.py +++ b/diffpy/snmf/optimizers.py @@ -20,7 +20,7 @@ def get_weights(stretched_component_gram_matrix, linear_coefficient, lower_bound Has length C. lower_bound: 1d array like - The lower bound on the values of the output weights. Has the same dimensions of the function output. Each + The lower bound on the values of the output weights. Has the same dimensions of the function output. Each element in 'lower_bound' determines the minimum value the corresponding element in the function output may take. upper_bound: 1d array like @@ -43,8 +43,9 @@ def get_weights(stretched_component_gram_matrix, linear_coefficient, lower_bound solution_variable = cvxpy.Variable(problem_size) objective = cvxpy.Minimize( - linear_coefficient.T @ solution_variable + 0.5 * cvxpy.quad_form(solution_variable, - stretched_component_gram_matrix)) + linear_coefficient.T @ solution_variable + + 0.5 * cvxpy.quad_form(solution_variable, stretched_component_gram_matrix) + ) constraints = [lower_bound <= solution_variable, solution_variable <= upper_bound] cvxpy.Problem(objective, constraints).solve() diff --git a/diffpy/snmf/stretchednmfapp.py b/diffpy/snmf/stretchednmfapp.py index 067d527..7feb5ce 100644 --- a/diffpy/snmf/stretchednmfapp.py +++ b/diffpy/snmf/stretchednmfapp.py @@ -5,25 +5,47 @@ from diffpy.snmf.containers import ComponentSignal from diffpy.snmf.io import load_input_signals, initialize_variables -ALLOWED_DATA_TYPES = ['powder_diffraction', 'pd', 'pair_distribution_function', 'pdf'] +ALLOWED_DATA_TYPES = ["powder_diffraction", "pd", "pair_distribution_function", "pdf"] def create_parser(): parser = argparse.ArgumentParser( - prog="stretched_nmf", - description="Stretched Nonnegative Matrix Factorization" + prog="stretched_nmf", description="Stretched Nonnegative Matrix Factorization" ) - parser.add_argument('-i', '--input-directory', type=str, default=None, - help="Directory containing experimental data. Defaults to current working directory.") - parser.add_argument('-o', '--output-directory', type=str, - help="The directory where the results will be written. Defaults to '/snmf_results'.") - parser.add_argument('t', '--data-type', type=str, default=None, choices=ALLOWED_DATA_TYPES, - help="The type of the experimental data.") - parser.add_argument('-l', '--lift-factor', type=float, default=1, - help="The lifting factor. Data will be lifted by lifted_data = data + abs(min(data) * lift). Default is 1.") - parser.add_argument('number-of-components', type=int, - help="The number of component signals for the NMF decomposition. Must be an integer greater than 0") - parser.add_argument('-v', '--version', action='version', help='Print the software version number') + parser.add_argument( + "-i", + "--input-directory", + type=str, + default=None, + help="Directory containing experimental data. Defaults to current working directory.", + ) + parser.add_argument( + "-o", + "--output-directory", + type=str, + help="The directory where the results will be written. Defaults to '/snmf_results'.", + ) + parser.add_argument( + "t", + "--data-type", + type=str, + default=None, + choices=ALLOWED_DATA_TYPES, + help="The type of the experimental data.", + ) + parser.add_argument( + "-l", + "--lift-factor", + type=float, + default=1, + help="The lifting factor. Data will be lifted by lifted_data = data + abs(min(data) * lift). Default is 1.", + ) + parser.add_argument( + "number-of-components", + type=int, + help="The number of component signals for the NMF decomposition. Must be an integer greater than 0", + ) + parser.add_argument("-v", "--version", action="version", help="Print the software version number") args = parser.parse_args() return args @@ -35,5 +57,5 @@ def main(): grid, input_data = load_input_signals(args.input_directory) lifted_input_data = lift_data(input_data, args.lift_factor) variables = initialize_variables(lifted_input_data, args.number_of_components, args.data_type) - components = initialize_components(variables['number_of_components'], variables['number_of_signals'], grid) + components = initialize_components(variables["number_of_components"], variables["number_of_signals"], grid) return components diff --git a/diffpy/snmf/subroutines.py b/diffpy/snmf/subroutines.py index c0052bb..e3acafb 100644 --- a/diffpy/snmf/subroutines.py +++ b/diffpy/snmf/subroutines.py @@ -170,11 +170,15 @@ def update_weights(components, data_input, method=None): stretched_components = np.zeros((signal_length, number_of_components)) for i, component in enumerate(components): stretched_components[:, i] = component.apply_stretch(signal)[0] - if method == 'align': + if method == "align": weights = lsqnonneg(stretched_components, data_input[:, signal]) else: - weights = get_weights(stretched_components.T @ stretched_components, - -stretched_components.T @ data_input[:, signal], 0, 1) + weights = get_weights( + stretched_components.T @ stretched_components, + -stretched_components.T @ data_input[:, signal], + 0, + 1, + ) weight_matrix[:, signal] = weights return weight_matrix @@ -236,13 +240,16 @@ def initialize_arrays(number_of_components, number_of_moments, signal_length): """ component_matrix_guess = np.random.rand(signal_length, number_of_components) weight_matrix_guess = np.random.rand(number_of_components, number_of_moments) - stretching_matrix_guess = np.ones(number_of_components, number_of_moments) + np.random.randn(number_of_components, - number_of_moments) * 1e-3 + stretching_matrix_guess = ( + np.ones(number_of_components, number_of_moments) + + np.random.randn(number_of_components, number_of_moments) * 1e-3 + ) return component_matrix_guess, weight_matrix_guess, stretching_matrix_guess -def objective_function(residual_matrix, stretching_factor_matrix, smoothness, smoothness_term, component_matrix, - sparsity): +def objective_function( + residual_matrix, stretching_factor_matrix, smoothness, smoothness_term, component_matrix, sparsity +): """Defines the objective function of the algorithm and returns its value. Calculates the value of '(||residual_matrix||_F) ** 2 + smoothness * (||smoothness_term * @@ -284,8 +291,11 @@ def objective_function(residual_matrix, stretching_factor_matrix, smoothness, sm residual_matrix = np.asarray(residual_matrix) stretching_factor_matrix = np.asarray(stretching_factor_matrix) component_matrix = np.asarray(component_matrix) - return .5 * np.linalg.norm(residual_matrix, 'fro') ** 2 + .5 * smoothness * np.linalg.norm( - smoothness_term @ stretching_factor_matrix.T, 'fro') ** 2 + sparsity * np.sum(np.sqrt(component_matrix)) + return ( + 0.5 * np.linalg.norm(residual_matrix, "fro") ** 2 + + 0.5 * smoothness * np.linalg.norm(smoothness_term @ stretching_factor_matrix.T, "fro") ** 2 + + sparsity * np.sum(np.sqrt(component_matrix)) + ) def get_stretched_component(stretching_factor, component, signal_length): @@ -325,11 +335,23 @@ def stretched_component_func(stretching_factor): stretched_component_gra = derivative_func(stretching_factor) stretched_component_hess = second_derivative_func(stretching_factor) - return np.asarray(stretched_component), np.asarray(stretched_component_gra), np.asarray(stretched_component_hess) - - -def update_weights_matrix(component_amount, signal_length, stretching_factor_matrix, component_matrix, data_input, - moment_amount, weights_matrix, method): + return ( + np.asarray(stretched_component), + np.asarray(stretched_component_gra), + np.asarray(stretched_component_hess), + ) + + +def update_weights_matrix( + component_amount, + signal_length, + stretching_factor_matrix, + component_matrix, + data_input, + moment_amount, + weights_matrix, + method, +): """Update the weight factors matrix. Parameters @@ -376,21 +398,25 @@ def update_weights_matrix(component_amount, signal_length, stretching_factor_mat for i in range(moment_amount): stretched_components = np.zeros((signal_length, component_amount)) for n in range(component_amount): - stretched_components[:, n] = get_stretched_component(stretching_factor_matrix[n, i], component_matrix[:, n], - signal_length)[0] - if method == 'align': + stretched_components[:, n] = get_stretched_component( + stretching_factor_matrix[n, i], component_matrix[:, n], signal_length + )[0] + if method == "align": weight = lsqnonneg(stretched_components[0:signal_length, :], data_input[0:signal_length, i]) else: weight = get_weights( stretched_components[0:signal_length, :].T @ stretched_components[0:signal_length, :], -1 * stretched_components[0:signal_length, :].T @ data_input[0:signal_length, i], - 0, 1) + 0, + 1, + ) weights_matrix[:, i] = weight return weights_matrix -def get_residual_matrix(component_matrix, weights_matrix, stretching_matrix, data_input, moment_amount, - component_amount, signal_length): +def get_residual_matrix( + component_matrix, weights_matrix, stretching_matrix, data_input, moment_amount, component_amount, signal_length +): """Obtains the residual matrix between the experimental data and calculated data Calculates the difference between the experimental data and the reconstructed experimental data created from the @@ -442,9 +468,11 @@ def get_residual_matrix(component_matrix, weights_matrix, stretching_matrix, dat for m in range(moment_amount): residual = residual_matrx[:, m] for k in range(component_amount): - residual = residual + weights_matrix[k, m] * get_stretched_component(stretching_matrix[k, m], - component_matrix[:, k], signal_length)[ - 0] + residual = ( + residual + + weights_matrix[k, m] + * get_stretched_component(stretching_matrix[k, m], component_matrix[:, k], signal_length)[0] + ) residual_matrx[:, m] = residual return residual_matrx diff --git a/diffpy/snmf/tests/test_containers.py b/diffpy/snmf/tests/test_containers.py index a80a876..2ccb036 100644 --- a/diffpy/snmf/tests/test_containers.py +++ b/diffpy/snmf/tests/test_containers.py @@ -2,32 +2,84 @@ import numpy as np from diffpy.snmf.containers import ComponentSignal -tas = [([np.arange(10), 3, 0, [6.55, .357, 8.49, 9.33, 6.78, 7.57, 7.43, 3.92, 6.55, 1.71], .25], - [[6.55, 6.78, 6.55, 0, 0, 0, 0, 0, 0, 0], [0, 14.07893122, 35.36478086, 0, 0, 0, 0, 0, 0, 0], - [0, -19.92049156, 11.6931482, 0, 0, 0, 0, 0, 0, 0]]), - ([np.arange(5), 10, 0, [-11.47, -10.688, -8.095, -29.44, 14.38], 1.25], - [[-11.47, -10.8444, -9.1322, -16.633, -20.6760], [0, -.50048, -3.31904, 40.9824, -112.1792], - [0, .800768, 5.310464, -65.57184, 179.48672]]), - ([np.arange(5), 2, 0, [-11.47, -10.688, -8.095, -29.44, 14.38], .88], - [[-11.47, -10.3344, -13.9164, -11.5136, 0], [0, -3.3484, 55.1265, -169.7572, 0], - [0, 7.609997, -125.2876, 385.81189, 0]]), - ([np.arange(10), 1, 2, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], .88], - [[1, 2.1364, 3.2727, 4.4091, 5.5455, 6.6818, 7.8182, 8.9545, 0, 0], - [0, -1.29, -2.58, -3.87, -5.165, -6.45, -7.74, -9.039, 0, 0], - [0, 2.93, 5.869, 8.084, 11.739, 14.674, 17.608, 20.5437, 0, 0]]), - ([np.arange(14), 100, 3, - [-2.9384, -1.4623, -2.0913, 4.6304, -1.2127, 1.4737, -0.3791, 1.7506, -1.5068, -2.7625, .9617, -.3494, -.3862, - 2.7960], .55], [[-2.9384, -1.9769, 0.9121, .6314, .8622, -2.4239, -.2302, 1.9281, 0, 0, 0, 0, 0, 0], - [0, 2.07933, 38.632, 18.3748, 43.07305, -61.557, 26.005, -73.637, 0, 0, 0, 0, 0, 0], - [0, -7.56, -140.480, -66.81, -156.6293, 223.84, -94.564, 267.7734, 0, 0, 0, 0, 0, 0]]), - ([np.arange(11), 20, 4, [0, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5], .987], - [[0, .2533, .5066, .7599, 1.0132, 1.2665, 1.5198, 1.7730, 2.0263, 2.2796, 0], - [0, -.2566, -.5132, -.7699, -1.0265, -1.2831, -1.5398, -1.7964, -2.0530, -2.3097, 0], - [0, .5200, 1.0400, 1.56005, 2.08007, 2.6000, 3.1201, 3.6401, 4.1601, 4.6801, 0]]), - ([np.arange(9), 15, 3, [-1, -2, -3, -4, -5, -6, -7, -8, -9], -0.4], - [[-1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]) - ] -@pytest.mark.parametrize('tas', tas) +tas = [ + ( + [np.arange(10), 3, 0, [6.55, 0.357, 8.49, 9.33, 6.78, 7.57, 7.43, 3.92, 6.55, 1.71], 0.25], + [ + [6.55, 6.78, 6.55, 0, 0, 0, 0, 0, 0, 0], + [0, 14.07893122, 35.36478086, 0, 0, 0, 0, 0, 0, 0], + [0, -19.92049156, 11.6931482, 0, 0, 0, 0, 0, 0, 0], + ], + ), + ( + [np.arange(5), 10, 0, [-11.47, -10.688, -8.095, -29.44, 14.38], 1.25], + [ + [-11.47, -10.8444, -9.1322, -16.633, -20.6760], + [0, -0.50048, -3.31904, 40.9824, -112.1792], + [0, 0.800768, 5.310464, -65.57184, 179.48672], + ], + ), + ( + [np.arange(5), 2, 0, [-11.47, -10.688, -8.095, -29.44, 14.38], 0.88], + [ + [-11.47, -10.3344, -13.9164, -11.5136, 0], + [0, -3.3484, 55.1265, -169.7572, 0], + [0, 7.609997, -125.2876, 385.81189, 0], + ], + ), + ( + [np.arange(10), 1, 2, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 0.88], + [ + [1, 2.1364, 3.2727, 4.4091, 5.5455, 6.6818, 7.8182, 8.9545, 0, 0], + [0, -1.29, -2.58, -3.87, -5.165, -6.45, -7.74, -9.039, 0, 0], + [0, 2.93, 5.869, 8.084, 11.739, 14.674, 17.608, 20.5437, 0, 0], + ], + ), + ( + [ + np.arange(14), + 100, + 3, + [ + -2.9384, + -1.4623, + -2.0913, + 4.6304, + -1.2127, + 1.4737, + -0.3791, + 1.7506, + -1.5068, + -2.7625, + 0.9617, + -0.3494, + -0.3862, + 2.7960, + ], + 0.55, + ], + [ + [-2.9384, -1.9769, 0.9121, 0.6314, 0.8622, -2.4239, -0.2302, 1.9281, 0, 0, 0, 0, 0, 0], + [0, 2.07933, 38.632, 18.3748, 43.07305, -61.557, 26.005, -73.637, 0, 0, 0, 0, 0, 0], + [0, -7.56, -140.480, -66.81, -156.6293, 223.84, -94.564, 267.7734, 0, 0, 0, 0, 0, 0], + ], + ), + ( + [np.arange(11), 20, 4, [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5], 0.987], + [ + [0, 0.2533, 0.5066, 0.7599, 1.0132, 1.2665, 1.5198, 1.7730, 2.0263, 2.2796, 0], + [0, -0.2566, -0.5132, -0.7699, -1.0265, -1.2831, -1.5398, -1.7964, -2.0530, -2.3097, 0], + [0, 0.5200, 1.0400, 1.56005, 2.08007, 2.6000, 3.1201, 3.6401, 4.1601, 4.6801, 0], + ], + ), + ( + [np.arange(9), 15, 3, [-1, -2, -3, -4, -5, -6, -7, -8, -9], -0.4], + [[-1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], + ), +] + + +@pytest.mark.parametrize("tas", tas) def test_apply_stretch(tas): component = ComponentSignal(tas[0][0], tas[0][1], tas[0][2]) component.iq = tas[0][3] @@ -37,14 +89,17 @@ def test_apply_stretch(tas): np.testing.assert_allclose(actual, expected, rtol=1e-01) -taw = [([np.arange(5), 2, 0, [0, 1, 2, 3, 4], .5], [0, .5, 1, 1.5, 2]), - ([np.arange(5), 20, 2, [0, -1, -2, -3, -4], .25], [0, -.25, -.5, -.75, -1]), - ([np.arange(40), 200, 4, np.arange(0, 10, .25), .3], np.arange(0, 10, .25) * .3), - ([np.arange(1), 10, 2, [10.5, 11.5, -10.5], 0], [0, 0, 0]), - ([[-12, -10, -15], 5, 2, [-.5, -1, -1.2], .9], [-.45, -.9, -1.08]), - ([[-12, -10, -15], 5, 2, [0, 0, 0], .9], [0, 0, 0]) - ] -@pytest.mark.parametrize('taw', taw) +taw = [ + ([np.arange(5), 2, 0, [0, 1, 2, 3, 4], 0.5], [0, 0.5, 1, 1.5, 2]), + ([np.arange(5), 20, 2, [0, -1, -2, -3, -4], 0.25], [0, -0.25, -0.5, -0.75, -1]), + ([np.arange(40), 200, 4, np.arange(0, 10, 0.25), 0.3], np.arange(0, 10, 0.25) * 0.3), + ([np.arange(1), 10, 2, [10.5, 11.5, -10.5], 0], [0, 0, 0]), + ([[-12, -10, -15], 5, 2, [-0.5, -1, -1.2], 0.9], [-0.45, -0.9, -1.08]), + ([[-12, -10, -15], 5, 2, [0, 0, 0], 0.9], [0, 0, 0]), +] + + +@pytest.mark.parametrize("taw", taw) def test_apply_weight(taw): component = ComponentSignal(taw[0][0], taw[0][1], taw[0][2]) component.iq = np.array(taw[0][3]) diff --git a/diffpy/snmf/tests/test_factorizers.py b/diffpy/snmf/tests/test_factorizers.py index 65aa0ac..a0c4546 100644 --- a/diffpy/snmf/tests/test_factorizers.py +++ b/diffpy/snmf/tests/test_factorizers.py @@ -4,17 +4,17 @@ from diffpy.snmf.factorizers import lsqnonneg tl = [ - ([[[1, 0], [1, 0], [0, 1]], [2, 1, 1]], [1.5, 1.]), + ([[[1, 0], [1, 0], [0, 1]], [2, 1, 1]], [1.5, 1.0]), ([[[2, 3], [1, 2], [0, 0]], [7, 7, 2]], [0, 2.6923]), - ([[[3, 2, 4, 1]], [3.2]], [0, 0, .8, 0]), - ([[[-.4, 0], [0, 0], [-9, -18]], [-2, -3, -4.9]], [.5532, 0]), - ([[[-.1, -.2], [-.8, -.9]], [0, 0]], [0, 0]), + ([[[3, 2, 4, 1]], [3.2]], [0, 0, 0.8, 0]), + ([[[-0.4, 0], [0, 0], [-9, -18]], [-2, -3, -4.9]], [0.5532, 0]), + ([[[-0.1, -0.2], [-0.8, -0.9]], [0, 0]], [0, 0]), ([[[0, 0], [0, 0]], [10, 10]], [0, 0]), - ([[[2], [1], [-4], [-.3]], [6, 4, .33, -5]], 0.767188240872451), + ([[[2], [1], [-4], [-0.3]], [6, 4, 0.33, -5]], 0.767188240872451), ] -@pytest.mark.parametrize('tl', tl) +@pytest.mark.parametrize("tl", tl) def test_lsqnonneg(tl): actual = lsqnonneg(tl[0][0], tl[0][1]) expected = tl[1] diff --git a/diffpy/snmf/tests/test_optimizers.py b/diffpy/snmf/tests/test_optimizers.py index e686250..25d90e7 100644 --- a/diffpy/snmf/tests/test_optimizers.py +++ b/diffpy/snmf/tests/test_optimizers.py @@ -5,15 +5,15 @@ ([[[1, 0], [0, 1]], [1, 1], [0, 0], [1, 1]], [0, 0]), ([[[1, 0], [0, 1]], [1, 1], -1, 1], [-1, -1]), ([[[1.75, 0], [0, 1.5]], [1, 1.2], -1, 1], [-0.571428571428571, -0.8]), - ([[[.75, .2], [.2, .75]], [-.1, -.2], -1, 1], [0.066985645933014, 0.248803827751196]), + ([[[0.75, 0.2], [0.2, 0.75]], [-0.1, -0.2], -1, 1], [0.066985645933014, 0.248803827751196]), ([[[2, -1, 0], [-1, 2, -1], [0, -1, 2]], [1, 1, 1], -10, 12], [-1.5, -2, -1.5]), ([[[2, -1, 0], [-1, 2, -1], [0, -1, 2]], [1, -1, -1], -10, 12], [0, 1, 1]), - ([[[4, 0, 0, 0], [0, 3, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]], [-2, -3, -4, -1], 0, 1000], [.5, 1, 2, 1]), + ([[[4, 0, 0, 0], [0, 3, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]], [-2, -3, -4, -1], 0, 1000], [0.5, 1, 2, 1]), ] -@pytest.mark.parametrize('tm', tm) +@pytest.mark.parametrize("tm", tm) def test_get_weights(tm): expected = tm[1] actual = get_weights(tm[0][0], tm[0][1], tm[0][2], tm[0][3]) - assert (actual == pytest.approx(expected, rel=1e-4, abs=1e-6)) + assert actual == pytest.approx(expected, rel=1e-4, abs=1e-6) diff --git a/diffpy/snmf/tests/test_polynomials.py b/diffpy/snmf/tests/test_polynomials.py index a75baca..6078b26 100644 --- a/diffpy/snmf/tests/test_polynomials.py +++ b/diffpy/snmf/tests/test_polynomials.py @@ -15,7 +15,7 @@ ([-9, 3], 2.8169), ([[2, 2], 2], [0, 0]), ([[[2, 2], [2, 2]], 2], [[0, 0], [0, 0]]), - ([[[[3, 2], [-2, -2], [100, 0]]], 2], [[[0, 0], [0, 0], [0, 0]]]) + ([[[[3, 2], [-2, -2], [100, 0]]], 2], [[[0, 0], [0, 0], [0, 0]]]), ] diff --git a/diffpy/snmf/tests/test_subroutines.py b/diffpy/snmf/tests/test_subroutines.py index 1a93971..bdb721f 100644 --- a/diffpy/snmf/tests/test_subroutines.py +++ b/diffpy/snmf/tests/test_subroutines.py @@ -1,13 +1,25 @@ import pytest import numpy as np from diffpy.snmf.containers import ComponentSignal -from diffpy.snmf.subroutines import objective_function, get_stretched_component, reconstruct_data, get_residual_matrix, \ - update_weights_matrix, initialize_arrays, lift_data, initialize_components, construct_stretching_matrix, \ - construct_component_matrix, construct_weight_matrix, update_weights, reconstruct_signal +from diffpy.snmf.subroutines import ( + objective_function, + get_stretched_component, + reconstruct_data, + get_residual_matrix, + update_weights_matrix, + initialize_arrays, + lift_data, + initialize_components, + construct_stretching_matrix, + construct_component_matrix, + construct_weight_matrix, + update_weights, + reconstruct_signal, +) to = [ ([[[1, 2], [3, 4]], [[5, 6], [7, 8]], 1e11, [[1, 2], [3, 4]], [[1, 2], [3, 4]], 1], 2.574e14), - ([[[11, 2], [31, 4]], [[5, 63], [7, 18]], .001, [[21, 2], [3, 4]], [[11, 22], [3, 40]], 1], 650.4576), + ([[[11, 2], [31, 4]], [[5, 63], [7, 18]], 0.001, [[21, 2], [3, 4]], [[11, 22], [3, 40]], 1], 650.4576), ([[[1, 2], [3, 4]], [[5, 6], [7, 8]], 1e11, [[1, 2], [3, 4]], [[1, 2], [3, 4]], 0], 2.574e14), ] @@ -20,31 +32,77 @@ def test_objective_function(to): tgso = [ - ([.25, [6.55, .357, 8.49, 9.33, 6.78, 7.57, 7.43, 3.92, 6.55, 1.71], 10], ( - [6.55, 6.78, 6.55, 0, 0, 0, 0, 0, 0, 0], [0, 14.07893122, 35.36478086, 0, 0, 0, 0, 0, 0, 0], - [0, -19.92049156, 11.6931482, 0, 0, 0, 0, 0, 0, 0])), - ([1.25, [-11.47, -10.688, -8.095, -29.44, 14.38], 5], ( - [-11.47, -10.8444, -9.1322, -16.633, -20.6760], [0, -.50048, -3.31904, 40.9824, -112.1792], - [0, .800768, 5.310464, -65.57184, 179.48672])), - ([.88, [-11.47, -10.688, -8.095, -29.44, 14.38], 5], ( - [-11.47, -10.3344, -13.9164, -11.5136, 0], [0, -3.3484, 55.1265, -169.7572, 0], - [0, 7.609997, -125.2876, 385.81189, 0])), - ( - [.88, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10], - ([1, 2.1364, 3.2727, 4.4091, 5.5455, 6.6818, 7.8182, 8.9545, 0, 0], - [0, -1.29, -2.58, -3.87, -5.165, -6.45, -7.74, -9.039, 0, 0], - [0, 2.93, 5.869, 8.084, 11.739, 14.674, 17.608, 20.5437, 0, 0])), - ([.55, - [-2.9384, -1.4623, -2.0913, 4.6304, -1.2127, 1.4737, -0.3791, 1.7506, -1.5068, -2.7625, .9617, -.3494, -.3862, - 2.7960], 14], ([-2.9384, -1.9769, 0.9121, .6314, .8622, -2.4239, -.2302, 1.9281, 0, 0, 0, 0, 0, 0], - [0, 2.07933, 38.632, 18.3748, 43.07305, -61.557, 26.005, -73.637, 0, 0, 0, 0, 0, 0], - [0, -7.56, -140.480, -66.81, -156.6293, 223.84, -94.564, 267.7734, 0, 0, 0, 0, 0, 0])), - ([.987, [0, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5], 11], - ([0, .2533, .5066, .7599, 1.0132, 1.2665, 1.5198, 1.7730, 2.0263, 2.2796, 0], - [0, -.2566, -.5132, -.7699, -1.0265, -1.2831, -1.5398, -1.7964, -2.0530, -2.3097, 0], - [0, .5200, 1.0400, 1.56005, 2.08007, 2.6000, 3.1201, 3.6401, 4.1601, 4.6801, 0])), - ([-0.4, [-1, -2, -3, -4, -5, -6, -7, -8, -9], 9], - ([-1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0])) + ( + [0.25, [6.55, 0.357, 8.49, 9.33, 6.78, 7.57, 7.43, 3.92, 6.55, 1.71], 10], + ( + [6.55, 6.78, 6.55, 0, 0, 0, 0, 0, 0, 0], + [0, 14.07893122, 35.36478086, 0, 0, 0, 0, 0, 0, 0], + [0, -19.92049156, 11.6931482, 0, 0, 0, 0, 0, 0, 0], + ), + ), + ( + [1.25, [-11.47, -10.688, -8.095, -29.44, 14.38], 5], + ( + [-11.47, -10.8444, -9.1322, -16.633, -20.6760], + [0, -0.50048, -3.31904, 40.9824, -112.1792], + [0, 0.800768, 5.310464, -65.57184, 179.48672], + ), + ), + ( + [0.88, [-11.47, -10.688, -8.095, -29.44, 14.38], 5], + ( + [-11.47, -10.3344, -13.9164, -11.5136, 0], + [0, -3.3484, 55.1265, -169.7572, 0], + [0, 7.609997, -125.2876, 385.81189, 0], + ), + ), + ( + [0.88, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10], + ( + [1, 2.1364, 3.2727, 4.4091, 5.5455, 6.6818, 7.8182, 8.9545, 0, 0], + [0, -1.29, -2.58, -3.87, -5.165, -6.45, -7.74, -9.039, 0, 0], + [0, 2.93, 5.869, 8.084, 11.739, 14.674, 17.608, 20.5437, 0, 0], + ), + ), + ( + [ + 0.55, + [ + -2.9384, + -1.4623, + -2.0913, + 4.6304, + -1.2127, + 1.4737, + -0.3791, + 1.7506, + -1.5068, + -2.7625, + 0.9617, + -0.3494, + -0.3862, + 2.7960, + ], + 14, + ], + ( + [-2.9384, -1.9769, 0.9121, 0.6314, 0.8622, -2.4239, -0.2302, 1.9281, 0, 0, 0, 0, 0, 0], + [0, 2.07933, 38.632, 18.3748, 43.07305, -61.557, 26.005, -73.637, 0, 0, 0, 0, 0, 0], + [0, -7.56, -140.480, -66.81, -156.6293, 223.84, -94.564, 267.7734, 0, 0, 0, 0, 0, 0], + ), + ), + ( + [0.987, [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5], 11], + ( + [0, 0.2533, 0.5066, 0.7599, 1.0132, 1.2665, 1.5198, 1.7730, 2.0263, 2.2796, 0], + [0, -0.2566, -0.5132, -0.7699, -1.0265, -1.2831, -1.5398, -1.7964, -2.0530, -2.3097, 0], + [0, 0.5200, 1.0400, 1.56005, 2.08007, 2.6000, 3.1201, 3.6401, 4.1601, 4.6801, 0], + ), + ), + ( + [-0.4, [-1, -2, -3, -4, -5, -6, -7, -8, -9], 9], + ([-1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]), + ), ] @@ -55,139 +113,279 @@ def test_get_stretched_component(tgso): np.testing.assert_allclose(actual, expected, rtol=1e-01) -tuwm = [([2, 2, [[.5, .6], [.7, .8]], [[1, 2], [4, 8]], [[1.6, 2.8], [5, 8.8]], 2, [[.78, .12], [.5, .5]], None], - [[0, 1], [1, 1]]), - ([2, 3, [[.5], [.5]], [[1, 2.5], [1.5, 3], [2, 3.5]], [[1, 2], [3, 4], [5, 6]], 1, [[.5], [.5]], None], - [[1], [.1892]]), - ([2, 3, [[.5, .6, .7], [.5, .6, .7]], [[1, 2.5], [1.5, 3], [2, 3.5]], [[1, 2, 3], [3, 4, 5], [5, 6, 7]], 3, - [[.5, .45, .4], [.5, .45, .4]], None], [[1, 1, 1], [.1892, .5600, .938]]), - ([3, 3, [[.7, .8, .9], [.71, .72, .73], [.8, .85, .9]], [[-1, -2.7, -3], [-11, -6, -5.1], [0, -1, -.5]], - [[-2, -3, -4], [-9, -5, -5], [0, -2, -1]], 3, [[.9, .4, .5], [1, 0, .4], [0, 0, .98]], None], - [[1, .0651, 0], [.5848, .0381, .1857], [0, 1, 1]]), - ([2, 2, [[.5], [.5]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], 1, [[.6], [.4]], 'align'], [[0], [0]]), - ([1, 3, [[.5, .3]], [[1], [1.1], [1.3]], [[1, 2], [2, 3], [3, 2]], 2, [[.6, .4]], None], [[1, 1]]), - ([2, 2, [[.5, .6], [.7, .8]], [[1, 2], [4, 8]], [[1.6, 2.8], [5, 8.8]], 2, [[.78, .12], [.5, .5]], 'align'], - [[0, 0], [1.0466, 1.46]]), - ([2, 3, [[.5], [.5]], [[1, 2.5], [1.5, 3], [2, 3.5]], [[1, 2], [3, 4], [5, 6]], 1, [[.5], [.5]], 'align'], - [[1.4], [0]]), - ([3, 3, [[.7, .8, .9], [.71, .72, .73], [.8, .85, .9]], [[-1, -2.7, -3], [-11, -6, -5.1], [0, -1, -.5]], - [[-2, -3, -4], [-9, -5, -5], [0, -2, -1]], 3, [[.9, .4, .5], [1, 0, .4], [0, 0, .98]], 'align'], - [[1.2605, .0552, 0], [.2723, 0, 0], [0, 1.0538, 1.1696]]), - ([2, 2, [[.5], [.5]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], 1, [[.6], [.4]], 'align'], [[0], [0]]), - ([1, 3, [[.5, .3]], [[1], [1.1], [1.3]], [[1, 2], [2, 3], [3, 2]], 2, [[.6, .4]], 'align'], [[1.3383, 2]]) - ] +tuwm = [ + ( + [ + 2, + 2, + [[0.5, 0.6], [0.7, 0.8]], + [[1, 2], [4, 8]], + [[1.6, 2.8], [5, 8.8]], + 2, + [[0.78, 0.12], [0.5, 0.5]], + None, + ], + [[0, 1], [1, 1]], + ), + ( + [2, 3, [[0.5], [0.5]], [[1, 2.5], [1.5, 3], [2, 3.5]], [[1, 2], [3, 4], [5, 6]], 1, [[0.5], [0.5]], None], + [[1], [0.1892]], + ), + ( + [ + 2, + 3, + [[0.5, 0.6, 0.7], [0.5, 0.6, 0.7]], + [[1, 2.5], [1.5, 3], [2, 3.5]], + [[1, 2, 3], [3, 4, 5], [5, 6, 7]], + 3, + [[0.5, 0.45, 0.4], [0.5, 0.45, 0.4]], + None, + ], + [[1, 1, 1], [0.1892, 0.5600, 0.938]], + ), + ( + [ + 3, + 3, + [[0.7, 0.8, 0.9], [0.71, 0.72, 0.73], [0.8, 0.85, 0.9]], + [[-1, -2.7, -3], [-11, -6, -5.1], [0, -1, -0.5]], + [[-2, -3, -4], [-9, -5, -5], [0, -2, -1]], + 3, + [[0.9, 0.4, 0.5], [1, 0, 0.4], [0, 0, 0.98]], + None, + ], + [[1, 0.0651, 0], [0.5848, 0.0381, 0.1857], [0, 1, 1]], + ), + ([2, 2, [[0.5], [0.5]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], 1, [[0.6], [0.4]], "align"], [[0], [0]]), + ([1, 3, [[0.5, 0.3]], [[1], [1.1], [1.3]], [[1, 2], [2, 3], [3, 2]], 2, [[0.6, 0.4]], None], [[1, 1]]), + ( + [ + 2, + 2, + [[0.5, 0.6], [0.7, 0.8]], + [[1, 2], [4, 8]], + [[1.6, 2.8], [5, 8.8]], + 2, + [[0.78, 0.12], [0.5, 0.5]], + "align", + ], + [[0, 0], [1.0466, 1.46]], + ), + ( + [ + 2, + 3, + [[0.5], [0.5]], + [[1, 2.5], [1.5, 3], [2, 3.5]], + [[1, 2], [3, 4], [5, 6]], + 1, + [[0.5], [0.5]], + "align", + ], + [[1.4], [0]], + ), + ( + [ + 3, + 3, + [[0.7, 0.8, 0.9], [0.71, 0.72, 0.73], [0.8, 0.85, 0.9]], + [[-1, -2.7, -3], [-11, -6, -5.1], [0, -1, -0.5]], + [[-2, -3, -4], [-9, -5, -5], [0, -2, -1]], + 3, + [[0.9, 0.4, 0.5], [1, 0, 0.4], [0, 0, 0.98]], + "align", + ], + [[1.2605, 0.0552, 0], [0.2723, 0, 0], [0, 1.0538, 1.1696]], + ), + ([2, 2, [[0.5], [0.5]], [[0, 0], [0, 0]], [[0, 0], [0, 0]], 1, [[0.6], [0.4]], "align"], [[0], [0]]), + ([1, 3, [[0.5, 0.3]], [[1], [1.1], [1.3]], [[1, 2], [2, 3], [3, 2]], 2, [[0.6, 0.4]], "align"], [[1.3383, 2]]), +] -@pytest.mark.parametrize('tuwm', tuwm) +@pytest.mark.parametrize("tuwm", tuwm) def test_update_weights_matrix(tuwm): - actual = update_weights_matrix(tuwm[0][0], tuwm[0][1], tuwm[0][2], tuwm[0][3], tuwm[0][4], tuwm[0][5], tuwm[0][6], - tuwm[0][7]) + actual = update_weights_matrix( + tuwm[0][0], tuwm[0][1], tuwm[0][2], tuwm[0][3], tuwm[0][4], tuwm[0][5], tuwm[0][6], tuwm[0][7] + ) expected = tuwm[1] - np.testing.assert_allclose(actual, expected, rtol=1e-03, atol=.5) + np.testing.assert_allclose(actual, expected, rtol=1e-03, atol=0.5) tgrm = [ - ([[[1, 2], [3, 4]], [[.25], [.75]], [[.9], [.7]], [[11, 22], [33, 44]], 1, 2, 2], [[-9, -22], [-33, -44]]), + ([[[1, 2], [3, 4]], [[0.25], [0.75]], [[0.9], [0.7]], [[11, 22], [33, 44]], 1, 2, 2], [[-9, -22], [-33, -44]]), ([[[1, 2], [3, 4]], [[1], [1]], [[1], [1]], [[11, 22], [33, 44]], 1, 2, 2], [[-8, -22], [-26, -44]]), - ([[[1.1, 4.4], [1.2, 4.5], [14, 7.8]], [[.4, .6], [.75, .25]], [[.9, .89], [.98, .88]], - [[10, 20], [-10.5, -20.6], [0.6, .9]], 2, 2, 3], [[-6.26, -18.24], [14.9744, 23.5067], [-.6, -.9]]), + ( + [ + [[1.1, 4.4], [1.2, 4.5], [14, 7.8]], + [[0.4, 0.6], [0.75, 0.25]], + [[0.9, 0.89], [0.98, 0.88]], + [[10, 20], [-10.5, -20.6], [0.6, 0.9]], + 2, + 2, + 3, + ], + [[-6.26, -18.24], [14.9744, 23.5067], [-0.6, -0.9]], + ), # positive float - ([[[-1.1, -4.4], [-1.2, -4.5], [-14, -7.8]], [[.4, .6], [.75, .25]], [[.9, .89], [.98, .88]], - [[10, 20], [-10.5, -20.6], [0.6, .9]], 2, 2, 3], [[-13.74, -21.76], [6.0256, 17.6933], [-.6, -.9]]), + ( + [ + [[-1.1, -4.4], [-1.2, -4.5], [-14, -7.8]], + [[0.4, 0.6], [0.75, 0.25]], + [[0.9, 0.89], [0.98, 0.88]], + [[10, 20], [-10.5, -20.6], [0.6, 0.9]], + 2, + 2, + 3, + ], + [[-13.74, -21.76], [6.0256, 17.6933], [-0.6, -0.9]], + ), # negative floats - ([[[0, 0, 0, 0], [0, 0, 0, 0]], [[.4], [.2], [.3], [.3]], [[.9], [.9], [.9], [.9]], [[0, 0, 0, 0], [0, 0, 0, 0]], 1, - 4, 2], [[0, 0, 0, 0], [0, 0, 0, 0]]) + ( + [ + [[0, 0, 0, 0], [0, 0, 0, 0]], + [[0.4], [0.2], [0.3], [0.3]], + [[0.9], [0.9], [0.9], [0.9]], + [[0, 0, 0, 0], [0, 0, 0, 0]], + 1, + 4, + 2, + ], + [[0, 0, 0, 0], [0, 0, 0, 0]], + ), ] -@pytest.mark.parametrize('tgrm', tgrm) +@pytest.mark.parametrize("tgrm", tgrm) def test_get_residual_matrix(tgrm): - actual = get_residual_matrix(tgrm[0][0], tgrm[0][1], tgrm[0][2], tgrm[0][3], tgrm[0][4], tgrm[0][5], tgrm[0][6]) + actual = get_residual_matrix( + tgrm[0][0], tgrm[0][1], tgrm[0][2], tgrm[0][3], tgrm[0][4], tgrm[0][5], tgrm[0][6] + ) expected = tgrm[1] np.testing.assert_allclose(actual, expected, rtol=1e-04) trd = [ - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)]), - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0)]), - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2), ComponentSignal([0, .25, .5, .75, 1], 2, 3), - ComponentSignal([0, .25, .5, .75, 1], 2, 4)]), - #([]) # Exception expected + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ] + ), + ([ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0)]), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 3), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 4), + ] + ), + # ([]) # Exception expected ] -@pytest.mark.parametrize('trd', trd) + + +@pytest.mark.parametrize("trd", trd) def test_reconstruct_data(trd): actual = reconstruct_data(trd) - assert actual.shape == (len(trd[0].iq),len(trd[0].weights)) + assert actual.shape == (len(trd[0].iq), len(trd[0].weights)) print(actual) -tld = [(([[[1, -1, 1], [0, 0, 0], [2, 10, -3]], 1]), ([[4, 2, 4], [3, 3, 3], [5, 13, 0]])), - (([[[1, -1, 1], [0, 0, 0], [2, 10, -3]], 0]), ([[1, -1, 1], [0, 0, 0], [2, 10, -3]])), - (([[[1, -1, 1], [0, 0, 0], [2, 10, -3]], .5]), ([[2.5, .5, 2.5], [1.5, 1.5, 1.5], [3.5, 11.5, -1.5]])), - (([[[1, -1, 1], [0, 0, 0], [2, 10, -3]], -1]), ([[4, 2, 4], [3, 3, 3], [5, 13, 0]])), - (([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], 100]), ([[0, 0, 0], [0, 0, 0], [0, 0, 0]])), - (([[[1.5, 2], [10.5, 1], [0.5, 2]], 1]), ([[2, 2.5], [11, 1.5], [1, 2.5]])), - (([[[-10, -10.5], [-12.2, -12.2], [0, 0]], 1]), ([[2.2, 1.7], [0, 0], [12.2, 12.2]])), - ] +tld = [ + (([[[1, -1, 1], [0, 0, 0], [2, 10, -3]], 1]), ([[4, 2, 4], [3, 3, 3], [5, 13, 0]])), + (([[[1, -1, 1], [0, 0, 0], [2, 10, -3]], 0]), ([[1, -1, 1], [0, 0, 0], [2, 10, -3]])), + (([[[1, -1, 1], [0, 0, 0], [2, 10, -3]], 0.5]), ([[2.5, 0.5, 2.5], [1.5, 1.5, 1.5], [3.5, 11.5, -1.5]])), + (([[[1, -1, 1], [0, 0, 0], [2, 10, -3]], -1]), ([[4, 2, 4], [3, 3, 3], [5, 13, 0]])), + (([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], 100]), ([[0, 0, 0], [0, 0, 0], [0, 0, 0]])), + (([[[1.5, 2], [10.5, 1], [0.5, 2]], 1]), ([[2, 2.5], [11, 1.5], [1, 2.5]])), + (([[[-10, -10.5], [-12.2, -12.2], [0, 0]], 1]), ([[2.2, 1.7], [0, 0], [12.2, 12.2]])), +] -@pytest.mark.parametrize('tld', tld) +@pytest.mark.parametrize("tld", tld) def test_lift_data(tld): actual = lift_data(tld[0][0], tld[0][1]) expected = tld[1] np.testing.assert_allclose(actual, expected) -tcc = [(2, 3,[0, .5, 1, 1.5]), # Regular usage - #(0, 3,[0, .5, 1, 1.5]), # Zero components raise an exception. Not tested - ] -@pytest.mark.parametrize('tcc', tcc) + +tcc = [ + (2, 3, [0, 0.5, 1, 1.5]), # Regular usage + # (0, 3,[0, .5, 1, 1.5]), # Zero components raise an exception. Not tested +] + + +@pytest.mark.parametrize("tcc", tcc) def test_initialize_components(tcc): actual = initialize_components(tcc[0], tcc[1], tcc[2]) assert len(actual) == tcc[0] assert len(actual[0].weights) == tcc[1] assert (actual[0].grid == np.array(tcc[2])).all() -tcso =[([ComponentSignal([0,.5,1,1.5],20,0)],1,20), - ([ComponentSignal([0,.5,1,1.5],20,0)],4,20), - # ([ComponentSignal([0,.5,1,1.5],20,0)],0,20), # Raises an exception - # ([ComponentSignal([0,.5,1,1.5],20,0)],-2,20), # Raises an exception - # ([ComponentSignal([0,.5,1,1.5],20,0)],1,0), # Raises an Exception - # ([ComponentSignal([0,.5,1,1.5],20,0)],1,-3), # Raises an exception - ([ComponentSignal([0,.5,1,1.5],20,0),ComponentSignal([0,.5,1,1.5],20,1)],2,20), - ([ComponentSignal([0,.5,1,1.5],20,0),ComponentSignal([0,.5,1,21.5],20,1)],2,20), - ([ComponentSignal([0,1,1.5],20,0),ComponentSignal([0,.5,1,21.5],20,1)],2,20), - # ([ComponentSignal([0,.5,1,1.5],20,0),ComponentSignal([0,.5,1,1.5],20,1)],1,-3), # Negative signal length. Raises an exception - #([],1,20), # Empty components. Raises an Exception - #([],-1,20), # Empty components with negative number of components. Raises an exception - #([],0,20), # Empty components with zero number of components. Raises an exception - #([],1,0), # Empty components with zero signal length. Raises an exception. - #([],-1,-2), # Empty components with negative number of components and signal length Raises an exception. +tcso = [ + ([ComponentSignal([0, 0.5, 1, 1.5], 20, 0)], 1, 20), + ([ComponentSignal([0, 0.5, 1, 1.5], 20, 0)], 4, 20), + # ([ComponentSignal([0,.5,1,1.5],20,0)],0,20), # Raises an exception + # ([ComponentSignal([0,.5,1,1.5],20,0)],-2,20), # Raises an exception + # ([ComponentSignal([0,.5,1,1.5],20,0)],1,0), # Raises an Exception + # ([ComponentSignal([0,.5,1,1.5],20,0)],1,-3), # Raises an exception + ([ComponentSignal([0, 0.5, 1, 1.5], 20, 0), ComponentSignal([0, 0.5, 1, 1.5], 20, 1)], 2, 20), + ([ComponentSignal([0, 0.5, 1, 1.5], 20, 0), ComponentSignal([0, 0.5, 1, 21.5], 20, 1)], 2, 20), + ([ComponentSignal([0, 1, 1.5], 20, 0), ComponentSignal([0, 0.5, 1, 21.5], 20, 1)], 2, 20), + # ([ComponentSignal([0,.5,1,1.5],20,0),ComponentSignal([0,.5,1,1.5],20,1)],1,-3), # Negative signal length. Raises an exception + # ([],1,20), # Empty components. Raises an Exception + # ([],-1,20), # Empty components with negative number of components. Raises an exception + # ([],0,20), # Empty components with zero number of components. Raises an exception + # ([],1,0), # Empty components with zero signal length. Raises an exception. + # ([],-1,-2), # Empty components with negative number of components and signal length Raises an exception. ] -@pytest.mark.parametrize('tcso',tcso) + + +@pytest.mark.parametrize("tcso", tcso) def test_construct_stretching_matrix(tcso): - actual = construct_stretching_matrix(tcso[0],tcso[1],tcso[2]) + actual = construct_stretching_matrix(tcso[0], tcso[1], tcso[2]) for component in tcso[0]: - np.testing.assert_allclose(actual[component.id,:], component.stretching_factors) - #assert actual[component.id, :] == component.stretching_factors + np.testing.assert_allclose(actual[component.id, :], component.stretching_factors) + # assert actual[component.id, :] == component.stretching_factors + tccm = [ - ([ComponentSignal([0,.25,.5,.75,1],20,0)]), - ([ComponentSignal([0,.25,.5,.75,1],0,0)]), - ([ComponentSignal([0,.25,.5,.75,1],20,0),ComponentSignal([0,.25,.5,.75,1],20,1),ComponentSignal([0,.25,.5,.75,1],20,2)]), - ([ComponentSignal([0, .25, .5, .75, 1], 20, 0), ComponentSignal([0, .25, .5, .75, 1], 20, 1), - ComponentSignal([0, .25, .5, .75, 1], 20, 2)]), - ([ComponentSignal([0, .25, .5, .75, 1], 20, 0), ComponentSignal([0, .25, .5, 2.75, 1], 20, 1), - ComponentSignal([0, .25, .5, .75, 1], 20, 2)]), - ([ComponentSignal([.25], 20, 0), ComponentSignal([.25], 20, 1), ComponentSignal([.25], 20, 2)]), - ([ComponentSignal([0, .25, .5, .75, 1], 20, 0), ComponentSignal([0, .25, .5, .75, 1], 20, 1)]), - # ([ComponentSignal([[0, .25, .5, .75, 1],[0, .25, .5, .75, 1]], 20, 0), ComponentSignal([[0, .25, .5, .75, 1],[0, .25, .5, .75, 1]], 20, 1)]), # iq is multidimensional. Expected to fail - # (ComponentSignal([], 20, 0)), # Expected to fail - # ([]), #Expected to fail + ([ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0)]), + ([ComponentSignal([0, 0.25, 0.5, 0.75, 1], 0, 0)]), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 2), + ] + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 2), ] -@pytest.mark.parametrize('tccm',tccm) + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0), + ComponentSignal([0, 0.25, 0.5, 2.75, 1], 20, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 2), + ] + ), + ([ComponentSignal([0.25], 20, 0), ComponentSignal([0.25], 20, 1), ComponentSignal([0.25], 20, 2)]), + ([ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0), ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 1)]), + # ([ComponentSignal([[0, .25, .5, .75, 1],[0, .25, .5, .75, 1]], 20, 0), ComponentSignal([[0, .25, .5, .75, 1],[0, .25, .5, .75, 1]], 20, 1)]), # iq is multidimensional. Expected to fail + # (ComponentSignal([], 20, 0)), # Expected to fail + # ([]), #Expected to fail +] + + +@pytest.mark.parametrize("tccm", tccm) def test_construct_component_matrix(tccm): actual = construct_component_matrix(tccm) for component in tccm: @@ -195,59 +393,144 @@ def test_construct_component_matrix(tccm): tcwm = [ - ([ComponentSignal([0,.25,.5,.75,1],20,0)]), - # ([ComponentSignal([0,.25,.5,.75,1],0,0)]), # 0 signal length. Failure expected - ([ComponentSignal([0,.25,.5,.75,1],20,0),ComponentSignal([0,.25,.5,.75,1],20,1),ComponentSignal([0,.25,.5,.75,1],20,2)]), - ([ComponentSignal([0, .25, .5, .75, 1], 20, 0), ComponentSignal([0, .25, .5, .75, 1], 20, 1), - ComponentSignal([0, .25, .5, .75, 1], 20, 2)]), - ([ComponentSignal([0, .25, .5, .75, 1], 20, 0), ComponentSignal([0, .25, .5, 2.75, 1], 20, 1), - ComponentSignal([0, .25, .5, .75, 1], 20, 2)]), - ([ComponentSignal([.25], 20, 0), ComponentSignal([.25], 20, 1), ComponentSignal([.25], 20, 2)]), - ([ComponentSignal([0, .25, .5, .75, 1], 20, 0), ComponentSignal([0, .25, .5, .75, 1], 20, 1)]), - #(ComponentSignal([], 20, 0)), # Expected to fail - #([]), #Expected to fail + ([ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0)]), + # ([ComponentSignal([0,.25,.5,.75,1],0,0)]), # 0 signal length. Failure expected + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 2), + ] + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 2), + ] + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0), + ComponentSignal([0, 0.25, 0.5, 2.75, 1], 20, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 2), + ] + ), + ([ComponentSignal([0.25], 20, 0), ComponentSignal([0.25], 20, 1), ComponentSignal([0.25], 20, 2)]), + ([ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 0), ComponentSignal([0, 0.25, 0.5, 0.75, 1], 20, 1)]), + # (ComponentSignal([], 20, 0)), # Expected to fail + # ([]), #Expected to fail ] -@pytest.mark.parametrize('tcwm',tcwm) + + +@pytest.mark.parametrize("tcwm", tcwm) def test_construct_weight_matrix(tcwm): actual = construct_weight_matrix(tcwm) for component in tcwm: np.testing.assert_allclose(actual[component.id], component.weights) -tuw = [([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)], [[1, 1], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5], [2, 2.1]], None), - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)], [[1, 1], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5], [2, 2.1]], "align"), - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)], [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], None), - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)], [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], "align"), - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)], [[-.5, 1], [1.2, -1.3], [1.1, -1], [0, -1.5], [0, .1]], None), - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)], [[-.5, 1], [1.2, -1.3], [1.1, -1], [0, -1.5], [0, .1]], "align"), - # ([ComponentSignal([0, .25, .5, .75, 1], 0, 0), ComponentSignal([0, .25, .5, .75, 1], 0, 1), - # ComponentSignal([0, .25, .5, .75, 1], 0, 2)], [[1, 1], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5], [2, 2.1]], None), - # ([ComponentSignal([0, .25, .5, .75, 1], 0, 0), ComponentSignal([0, .25, .5, .75, 1], 0, 1), - # ComponentSignal([0, .25, .5, .75, 1], 0, 2)], [], None), - # ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - # ComponentSignal([0, .25, .5, .75, 1], 2, 2)], [], 170), - ] -@pytest.mark.parametrize('tuw', tuw) +tuw = [ + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ], + [[1, 1], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5], [2, 2.1]], + None, + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ], + [[1, 1], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5], [2, 2.1]], + "align", + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ], + [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], + None, + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ], + [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], + "align", + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ], + [[-0.5, 1], [1.2, -1.3], [1.1, -1], [0, -1.5], [0, 0.1]], + None, + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ], + [[-0.5, 1], [1.2, -1.3], [1.1, -1], [0, -1.5], [0, 0.1]], + "align", + ), + # ([ComponentSignal([0, .25, .5, .75, 1], 0, 0), ComponentSignal([0, .25, .5, .75, 1], 0, 1), + # ComponentSignal([0, .25, .5, .75, 1], 0, 2)], [[1, 1], [1.2, 1.3], [1.3, 1.4], [1.4, 1.5], [2, 2.1]], None), + # ([ComponentSignal([0, .25, .5, .75, 1], 0, 0), ComponentSignal([0, .25, .5, .75, 1], 0, 1), + # ComponentSignal([0, .25, .5, .75, 1], 0, 2)], [], None), + # ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), + # ComponentSignal([0, .25, .5, .75, 1], 2, 2)], [], 170), +] + + +@pytest.mark.parametrize("tuw", tuw) def test_update_weights(tuw): actual = update_weights(tuw[0], tuw[1], tuw[2]) assert np.shape(actual) == (len(tuw[0]), len(tuw[0][0].weights)) -trs = [([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)], 1), - ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - ComponentSignal([0, .25, .5, .75, 1], 2, 2)], 0), - ([ComponentSignal([0, .25, .5, .75, 1], 3, 0), ComponentSignal([0, .25, .5, .75, 1], 3, 1), - ComponentSignal([0, .25, .5, .75, 1], 3, 2)], 2), - # ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), - # ComponentSignal([0, .25, .5, .75, 1], 2, 2)], -1), + +trs = [ + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ], + 1, + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 2, 2), + ], + 0, + ), + ( + [ + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 3, 0), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 3, 1), + ComponentSignal([0, 0.25, 0.5, 0.75, 1], 3, 2), + ], + 2, + ), + # ([ComponentSignal([0, .25, .5, .75, 1], 2, 0), ComponentSignal([0, .25, .5, .75, 1], 2, 1), + # ComponentSignal([0, .25, .5, .75, 1], 2, 2)], -1), ] -@pytest.mark.parametrize('trs',trs) + + +@pytest.mark.parametrize("trs", trs) def test_reconstruct_signal(trs): actual = reconstruct_signal(trs[0], trs[1]) assert len(actual) == len(trs[0][0].grid) diff --git a/diffpy/snmf/version.py b/diffpy/snmf/version.py index bf3c080..d7a5c1c 100644 --- a/diffpy/snmf/version.py +++ b/diffpy/snmf/version.py @@ -20,9 +20,9 @@ # obtain version information from pkg_resources import get_distribution -__version__ = get_distribution('diffpy.snmf').version +__version__ = get_distribution("diffpy.snmf").version # we assume that tag_date was used and __version__ ends in YYYYMMDD -__date__ = __version__[-8:-4] + '-' + __version__[-4:-2] + '-' + __version__[-2:] +__date__ = __version__[-8:-4] + "-" + __version__[-4:-2] + "-" + __version__[-2:] # End of file diff --git a/doc/source/conf.py b/doc/source/conf.py index a6cf4b5..4c28b45 100644 --- a/doc/source/conf.py +++ b/doc/source/conf.py @@ -12,17 +12,18 @@ # import sys import os -sys.path.insert(0, os.path.abspath('../..')) + +sys.path.insert(0, os.path.abspath("../..")) # -- Project information ----------------------------------------------------- -project = 'snmf' -copyright = '2009-2023, Trustees of Columbia University in the City of New York, all rights reserved.' -author = 'Ran Gu, Adeolu Ajayi, Qiang Du, Simon J.L. Billinge' +project = "snmf" +copyright = "2009-2023, Trustees of Columbia University in the City of New York, all rights reserved." +author = "Ran Gu, Adeolu Ajayi, Qiang Du, Simon J.L. Billinge" # The full version, including alpha/beta/rc tags -release = '0.1.0' +release = "0.1.0" # -- General configuration --------------------------------------------------- @@ -31,29 +32,35 @@ # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. import sphinx_rtd_theme -extensions = ['sphinx.ext.autodoc', 'sphinx.ext.napoleon', - 'sphinx.ext.todo', 'sphinx.ext.viewcode', - 'sphinx.ext.intersphinx', 'm2r'] + +extensions = [ + "sphinx.ext.autodoc", + "sphinx.ext.napoleon", + "sphinx.ext.todo", + "sphinx.ext.viewcode", + "sphinx.ext.intersphinx", + "m2r", +] napoleon_google_docstring = False napoleon_use_param = False napoleon_use_ivar = False # Add any paths that contain templates here, relative to this directory. -templates_path = ['_templates'] +templates_path = ["_templates"] from jinja2 import Template, Environment, FileSystemLoader -source_suffix = '.rst' +source_suffix = ".rst" -master_doc = 'index' +master_doc = "index" -language = 'en' +language = "en" # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. -exclude_patterns = ['Thumbs.db', '.DS_Store'] +exclude_patterns = ["Thumbs.db", ".DS_Store"] -pygments_style = 'sphinx' +pygments_style = "sphinx" todo_include_todos = True @@ -61,7 +68,7 @@ # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. -html_theme = 'sphinx_rtd_theme' +html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_theme_options = {} @@ -69,22 +76,26 @@ # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". -html_static_path = ['_static'] +html_static_path = ["_static"] -htmlhelp_basename = 'snmfdoc' +htmlhelp_basename = "snmfdoc" latex_documents = [ - (master_doc, 'snmf.tex', 'Snmf Documentation', - 'author', 'manual'), + (master_doc, "snmf.tex", "Snmf Documentation", "author", "manual"), ] -man_pages = [ - (master_doc, 'snmf', 'Snmf Documentation', [author], 1) -] +man_pages = [(master_doc, "snmf", "Snmf Documentation", [author], 1)] texinfo_documents = [ - (master_doc, 'snmf', 'Snmf Documentation', author, - 'snmf', 'One line description of project.', 'Miscellaneous'), + ( + master_doc, + "snmf", + "Snmf Documentation", + author, + "snmf", + "One line description of project.", + "Miscellaneous", + ), ] epub_title = project @@ -92,4 +103,4 @@ epub_publisher = author epub_copyright = copyright -epub_exclude_files = ['search.html'] +epub_exclude_files = ["search.html"] diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..e537e24 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,22 @@ +[tool.black] +line-length = 115 +include = '\.pyi?$' +exclude = ''' +/( + \.git + | \.hg + | \.mypy_cache + | \.tox + | \.venv + | \.rst + | \.txt + | _build + | buck-out + | build + | dist + + # The following are specific to Black, you probably don't want those. + | blib2to3 + | tests/data +)/ +''' diff --git a/run_tests.py b/run_tests.py index 108efd3..69cde5f 100644 --- a/run_tests.py +++ b/run_tests.py @@ -3,16 +3,15 @@ import sys import pytest -if __name__ == '__main__': +if __name__ == "__main__": # show output results from every test function - args = ['-v'] + args = ["-v"] # show the message output for skipped and expected failure tests if len(sys.argv) > 1: args.extend(sys.argv[1:]) - print('pytest arguments: {}'.format(args)) + print("pytest arguments: {}".format(args)) # # compute coverage stats for xpdAcq # call pytest and exit with the return code from pytest so that # travis will fail correctly if tests fail exit_res = pytest.main(args) sys.exit(exit_res) - diff --git a/setup.py b/setup.py index 4e022e3..54d138c 100644 --- a/setup.py +++ b/setup.py @@ -16,49 +16,49 @@ # with open(os.path.join(MYDIR, 'requirements/run.txt')) as fp: # requirements = [line.strip() for line in fp] -with open(os.path.join(MYDIR, 'README.md')) as fp: +with open(os.path.join(MYDIR, "README.md")) as fp: long_description = fp.read() # define distribution setup( name="diffpy.snmf", - version='0.0.1', - packages=find_packages(exclude=['tests', 'applications']), + version="0.0.1", + packages=find_packages(exclude=["tests", "applications"]), entry_points={ # define console_scripts here, see setuptools docs for details. - 'console_scripts': [ - 'snmf = diffpy.snmf.stretchednmfapp:main', + "console_scripts": [ + "snmf = diffpy.snmf.stretchednmfapp:main", ], }, - test_suite='tests', + test_suite="tests", # install_requires=requirements, - author='Ran Gu, Simon J.L. Billinge', - author_email='sb2896@columbia.edu', - maintainer='Simon J.L. Billinge', - maintainer_email='sb2896@columbia.edu', - url='https://github.com/diffpy/diffpy.snmf', + author="Ran Gu, Simon J.L. Billinge", + author_email="sb2896@columbia.edu", + maintainer="Simon J.L. Billinge", + maintainer_email="sb2896@columbia.edu", + url="https://github.com/diffpy/diffpy.snmf", description="A python package implementing the stretched NMF algorithm.", - long_description = long_description, - long_description_content_type = 'text/x-rst', - license='BSD', + long_description=long_description, + long_description_content_type="text/x-rst", + license="BSD", keywords="diffpy PDF", - classifiers = [ + classifiers=[ # List of possible values at # http://pypi.python.org/pypi?:action=list_classifiers - 'Development Status :: 4 - Beta', - 'Environment :: Console', - 'Intended Audience :: Science/Research', - 'License :: OSI Approved :: BSD License', - 'Operating System :: MacOS :: MacOS X', - 'Operating System :: Microsoft :: Windows', - 'Operating System :: POSIX', - 'Operating System :: Unix', - 'Programming Language :: Python :: 3.9', - 'Programming Language :: Python :: 3.10', - 'Programming Language :: Python :: 3.11', - 'Topic :: Scientific/Engineering :: Chemistry', - 'Topic :: Scientific/Engineering :: Physics', + "Development Status :: 4 - Beta", + "Environment :: Console", + "Intended Audience :: Science/Research", + "License :: OSI Approved :: BSD License", + "Operating System :: MacOS :: MacOS X", + "Operating System :: Microsoft :: Windows", + "Operating System :: POSIX", + "Operating System :: Unix", + "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Topic :: Scientific/Engineering :: Chemistry", + "Topic :: Scientific/Engineering :: Physics", ], )