|
17 | 17 | import unittest
|
18 | 18 |
|
19 | 19 | import numpy
|
| 20 | +import pytest |
20 | 21 |
|
21 | 22 | from diffpy.srfit.sas.sasimport import sasimport
|
22 |
| - |
23 |
| -from .utils import _msg_nosas, has_sas |
| 23 | +import diffpy.srfit.pdf.characteristicfunctions as cf |
24 | 24 |
|
25 | 25 | # Global variables to be assigned in setUp
|
26 | 26 | cf = None
|
27 | 27 |
|
28 | 28 | # ----------------------------------------------------------------------------
|
29 | 29 |
|
30 | 30 |
|
31 |
| -@unittest.skipUnless(has_sas, _msg_nosas) |
32 |
| -class TestSASCF(unittest.TestCase): |
33 |
| - |
34 |
| - def setUp(self): |
35 |
| - global cf |
36 |
| - import diffpy.srfit.pdf.characteristicfunctions as cf |
37 |
| - |
38 |
| - return |
39 |
| - |
40 |
| - def testSphere(self): |
41 |
| - radius = 25 |
42 |
| - # Calculate sphere cf from SphereModel |
43 |
| - SphereModel = sasimport("sas.models.SphereModel").SphereModel |
44 |
| - model = SphereModel() |
45 |
| - model.setParam("radius", radius) |
46 |
| - ff = cf.SASCF("sphere", model) |
47 |
| - r = numpy.arange(1, 60, 0.1, dtype=float) |
48 |
| - fr1 = ff(r) |
49 |
| - |
50 |
| - # Calculate sphere cf analytically |
51 |
| - fr2 = cf.sphericalCF(r, 2 * radius) |
52 |
| - diff = fr1 - fr2 |
53 |
| - res = numpy.dot(diff, diff) |
54 |
| - res /= numpy.dot(fr2, fr2) |
55 |
| - self.assertAlmostEqual(0, res, 4) |
56 |
| - return |
57 |
| - |
58 |
| - def testSpheroid(self): |
59 |
| - prad = 20.9 |
60 |
| - erad = 33.114 |
61 |
| - # Calculate cf from EllipsoidModel |
62 |
| - EllipsoidModel = sasimport("sas.models.EllipsoidModel").EllipsoidModel |
63 |
| - model = EllipsoidModel() |
64 |
| - model.setParam("radius_a", prad) |
65 |
| - model.setParam("radius_b", erad) |
66 |
| - ff = cf.SASCF("spheroid", model) |
67 |
| - r = numpy.arange(0, 100, 1 / numpy.pi, dtype=float) |
68 |
| - fr1 = ff(r) |
69 |
| - |
70 |
| - # Calculate cf analytically |
71 |
| - fr2 = cf.spheroidalCF(r, erad, prad) |
72 |
| - diff = fr1 - fr2 |
73 |
| - res = numpy.dot(diff, diff) |
74 |
| - res /= numpy.dot(fr2, fr2) |
75 |
| - self.assertAlmostEqual(0, res, 4) |
76 |
| - return |
77 |
| - |
78 |
| - def testShell(self): |
79 |
| - radius = 19.2 |
80 |
| - thickness = 7.8 |
81 |
| - # Calculate cf from VesicleModel |
82 |
| - VesicleModel = sasimport("sas.models.VesicleModel").VesicleModel |
83 |
| - model = VesicleModel() |
84 |
| - model.setParam("radius", radius) |
85 |
| - model.setParam("thickness", thickness) |
86 |
| - ff = cf.SASCF("vesicle", model) |
87 |
| - r = numpy.arange(0, 99.45, 0.1, dtype=float) |
88 |
| - fr1 = ff(r) |
89 |
| - |
90 |
| - # Calculate sphere cf analytically |
91 |
| - fr2 = cf.shellCF(r, radius, thickness) |
92 |
| - diff = fr1 - fr2 |
93 |
| - res = numpy.dot(diff, diff) |
94 |
| - res /= numpy.dot(fr2, fr2) |
95 |
| - self.assertAlmostEqual(0, res, 4) |
96 |
| - return |
97 |
| - |
98 |
| - def testCylinder(self): |
99 |
| - """Make sure cylinder works over different r-ranges.""" |
100 |
| - radius = 100 |
101 |
| - length = 30 |
102 |
| - |
103 |
| - CylinderModel = sasimport("sas.models.CylinderModel").CylinderModel |
104 |
| - model = CylinderModel() |
105 |
| - model.setParam("radius", radius) |
106 |
| - model.setParam("length", length) |
107 |
| - |
108 |
| - ff = cf.SASCF("cylinder", model) |
109 |
| - |
110 |
| - r1 = numpy.arange(0, 10, 0.1, dtype=float) |
111 |
| - r2 = numpy.arange(0, 50, 0.1, dtype=float) |
112 |
| - r3 = numpy.arange(0, 100, 0.1, dtype=float) |
113 |
| - r4 = numpy.arange(0, 500, 0.1, dtype=float) |
114 |
| - |
115 |
| - fr1 = ff(r1) |
116 |
| - fr2 = ff(r2) |
117 |
| - fr3 = ff(r3) |
118 |
| - fr4 = ff(r4) |
119 |
| - |
120 |
| - d = fr1 - numpy.interp(r1, r2, fr2) |
121 |
| - res12 = numpy.dot(d, d) |
122 |
| - res12 /= numpy.dot(fr1, fr1) |
123 |
| - self.assertAlmostEqual(0, res12, 4) |
124 |
| - |
125 |
| - d = fr1 - numpy.interp(r1, r3, fr3) |
126 |
| - res13 = numpy.dot(d, d) |
127 |
| - res13 /= numpy.dot(fr1, fr1) |
128 |
| - self.assertAlmostEqual(0, res13, 4) |
129 |
| - |
130 |
| - d = fr1 - numpy.interp(r1, r4, fr4) |
131 |
| - res14 = numpy.dot(d, d) |
132 |
| - res14 /= numpy.dot(fr1, fr1) |
133 |
| - self.assertAlmostEqual(0, res14, 4) |
134 |
| - |
135 |
| - d = fr2 - numpy.interp(r2, r3, fr3) |
136 |
| - res23 = numpy.dot(d, d) |
137 |
| - res23 /= numpy.dot(fr2, fr2) |
138 |
| - self.assertAlmostEqual(0, res23, 4) |
139 |
| - |
140 |
| - d = fr2 - numpy.interp(r2, r4, fr4) |
141 |
| - res24 = numpy.dot(d, d) |
142 |
| - res24 /= numpy.dot(fr2, fr2) |
143 |
| - self.assertAlmostEqual(0, res24, 4) |
144 |
| - |
145 |
| - d = fr3 - numpy.interp(r3, r4, fr4) |
146 |
| - res34 = numpy.dot(d, d) |
147 |
| - res34 /= numpy.dot(fr3, fr3) |
148 |
| - self.assertAlmostEqual(0, res34, 4) |
149 |
| - return |
| 31 | +def testSphere(sas_available): |
| 32 | + if not sas_available: |
| 33 | + pytest.skip("sas package not available") |
| 34 | + radius = 25 |
| 35 | + # Calculate sphere cf from SphereModel |
| 36 | + SphereModel = sasimport("sas.models.SphereModel").SphereModel |
| 37 | + model = SphereModel() |
| 38 | + model.setParam("radius", radius) |
| 39 | + ff = cf.SASCF("sphere", model) |
| 40 | + r = numpy.arange(1, 60, 0.1, dtype=float) |
| 41 | + fr1 = ff(r) |
| 42 | + |
| 43 | + # Calculate sphere cf analytically |
| 44 | + fr2 = cf.sphericalCF(r, 2 * radius) |
| 45 | + diff = fr1 - fr2 |
| 46 | + res = numpy.dot(diff, diff) |
| 47 | + res /= numpy.dot(fr2, fr2) |
| 48 | + assert res == pytest.approx(0, abs=1e-4) |
| 49 | + return |
| 50 | + |
| 51 | +def testSpheroid(sas_available): |
| 52 | + if not sas_available: |
| 53 | + pytest.skip("sas package not available") |
| 54 | + prad = 20.9 |
| 55 | + erad = 33.114 |
| 56 | + # Calculate cf from EllipsoidModel |
| 57 | + EllipsoidModel = sasimport("sas.models.EllipsoidModel").EllipsoidModel |
| 58 | + model = EllipsoidModel() |
| 59 | + model.setParam("radius_a", prad) |
| 60 | + model.setParam("radius_b", erad) |
| 61 | + ff = cf.SASCF("spheroid", model) |
| 62 | + r = numpy.arange(0, 100, 1 / numpy.pi, dtype=float) |
| 63 | + fr1 = ff(r) |
| 64 | + |
| 65 | + # Calculate cf analytically |
| 66 | + fr2 = cf.spheroidalCF(r, erad, prad) |
| 67 | + diff = fr1 - fr2 |
| 68 | + res = numpy.dot(diff, diff) |
| 69 | + res /= numpy.dot(fr2, fr2) |
| 70 | + assert res == pytest.approx(0, abs=1e-4) |
| 71 | + return |
| 72 | + |
| 73 | +def testShell(sas_available): |
| 74 | + if not sas_available: |
| 75 | + pytest.skip("sas package not available") |
| 76 | + radius = 19.2 |
| 77 | + thickness = 7.8 |
| 78 | + # Calculate cf from VesicleModel |
| 79 | + VesicleModel = sasimport("sas.models.VesicleModel").VesicleModel |
| 80 | + model = VesicleModel() |
| 81 | + model.setParam("radius", radius) |
| 82 | + model.setParam("thickness", thickness) |
| 83 | + ff = cf.SASCF("vesicle", model) |
| 84 | + r = numpy.arange(0, 99.45, 0.1, dtype=float) |
| 85 | + fr1 = ff(r) |
| 86 | + |
| 87 | + # Calculate sphere cf analytically |
| 88 | + fr2 = cf.shellCF(r, radius, thickness) |
| 89 | + diff = fr1 - fr2 |
| 90 | + res = numpy.dot(diff, diff) |
| 91 | + res /= numpy.dot(fr2, fr2) |
| 92 | + assert res == pytest.approx(0, abs=1e-4) |
| 93 | + return |
| 94 | + |
| 95 | +def testCylinder(sas_available): |
| 96 | + if not sas_available: |
| 97 | + pytest.skip("sas package not available") |
| 98 | + """Make sure cylinder works over different r-ranges.""" |
| 99 | + radius = 100 |
| 100 | + length = 30 |
| 101 | + |
| 102 | + CylinderModel = sasimport("sas.models.CylinderModel").CylinderModel |
| 103 | + model = CylinderModel() |
| 104 | + model.setParam("radius", radius) |
| 105 | + model.setParam("length", length) |
| 106 | + |
| 107 | + ff = cf.SASCF("cylinder", model) |
| 108 | + |
| 109 | + r1 = numpy.arange(0, 10, 0.1, dtype=float) |
| 110 | + r2 = numpy.arange(0, 50, 0.1, dtype=float) |
| 111 | + r3 = numpy.arange(0, 100, 0.1, dtype=float) |
| 112 | + r4 = numpy.arange(0, 500, 0.1, dtype=float) |
| 113 | + |
| 114 | + fr1 = ff(r1) |
| 115 | + fr2 = ff(r2) |
| 116 | + fr3 = ff(r3) |
| 117 | + fr4 = ff(r4) |
| 118 | + |
| 119 | + d = fr1 - numpy.interp(r1, r2, fr2) |
| 120 | + res12 = numpy.dot(d, d) |
| 121 | + res12 /= numpy.dot(fr1, fr1) |
| 122 | + assert res12 == pytest.approx(0, abs=1e-4) |
| 123 | + |
| 124 | + d = fr1 - numpy.interp(r1, r3, fr3) |
| 125 | + res13 = numpy.dot(d, d) |
| 126 | + res13 /= numpy.dot(fr1, fr1) |
| 127 | + assert res13 == pytest.approx(0, abs=1e-4) |
| 128 | + |
| 129 | + d = fr1 - numpy.interp(r1, r4, fr4) |
| 130 | + res14 = numpy.dot(d, d) |
| 131 | + res14 /= numpy.dot(fr1, fr1) |
| 132 | + assert res14 == pytest.approx(0, abs=1e-4) |
| 133 | + |
| 134 | + d = fr2 - numpy.interp(r2, r3, fr3) |
| 135 | + res23 = numpy.dot(d, d) |
| 136 | + res23 /= numpy.dot(fr2, fr2) |
| 137 | + assert res23 == pytest.approx(0, abs=1e-4) |
| 138 | + |
| 139 | + d = fr2 - numpy.interp(r2, r4, fr4) |
| 140 | + res24 = numpy.dot(d, d) |
| 141 | + res24 /= numpy.dot(fr2, fr2) |
| 142 | + assert res24 == pytest.approx(0, abs=1e-4) |
| 143 | + |
| 144 | + d = fr3 - numpy.interp(r3, r4, fr4) |
| 145 | + res34 = numpy.dot(d, d) |
| 146 | + res34 /= numpy.dot(fr3, fr3) |
| 147 | + assert res34 == pytest.approx(0, abs=1e-4) |
| 148 | + return |
150 | 149 |
|
151 | 150 |
|
152 | 151 | # End of class TestSASCF
|
|
0 commit comments