@@ -887,11 +887,27 @@ def replacepeaks(self, newpeaks, delslice=slice(0, 0)):
887887 return
888888
889889 def deletepeak (self , idx ):
890- """Delete the peak at the given index."""
890+ """Delete the peak at the given index.
891+
892+ Parameters
893+ ----------
894+ idx : int
895+ Index of peak to delete.
896+
897+ Returns
898+ -------
899+ None
900+ """
891901 self .replacepeaks ([], slice (idx , idx + 1 ))
892902
893903 def estimatepeak (self ):
894- """Attempt to add single peak to empty cluster. Return True if successful."""
904+ """Attempt to add single peak to empty cluster. Return True if successful.
905+
906+ Returns
907+ -------
908+ bool
909+ True if successful, False otherwise.
910+ """
895911 # STUB!!! ###
896912 # Currently only a single peak function is supported. Dynamic
897913 # selection from multiple types may require additional support
@@ -926,16 +942,26 @@ def fit(
926942 """Perform a chi-square fit of the model to data in cluster.
927943
928944 Parameters
929- justify - Revert to initial model (if one exists) if new model
930- has only a single peak and the quality of the fit suggests
931- additional peaks are present.
932- ntrials - The maximum number of function evaluations.
933- '0' indicates the fitting algorithm's default.
934- fitbaseline - Whether to fit baseline along with peaks
935- estimate - Estimate a single peak from data if model is empty.
936- cov - Optional ModelCovariance object preserves covariance information.
937- cov_format - Parameterization to use in cov.
945+ ----------
946+ justify : bool
947+ Revert to initial model (if one exists) if new model
948+ has only a single peak and the quality of the fit suggests
949+ additional peaks are present. Default is False.
950+ ntrials : int
951+ The maximum number of function evaluations.
952+ '0' indicates the fitting algorithm's default.
953+ fitbaseline : bool
954+ Whether to fit baseline along with peaks. Default is False.
955+ estimate : bool
956+ Estimate a single peak from data if model is empty. Default is True.
957+ cov : ModelCovariance or None
958+ Optional ModelCovariance object preserves covariance information.
959+ cov_format : str
960+ Parameterization to use in cov.
938961
962+ Returns
963+ -------
964+ ModelEvaluator or None
939965 If fitting changes a model, return ModelEvaluator instance. Otherwise
940966 return None.
941967 """
@@ -1040,10 +1066,16 @@ def contingent_fit(self, minpoints, growth_threshold):
10401066 """Fit cluster if it has grown sufficiently large since its last fit.
10411067
10421068 Parameters
1043- minpoints - The minimum number of points an empty cluster requires to fit.
1044- growth_threshold - Fit non-empty model if (currentsize/oldsize) >= this value.
1069+ ----------
1070+ minpoints : int
1071+ The minimum number of points an empty cluster requires to fit.
1072+ growth_threshold : float
1073+ Fit non-empty model if (currentsize/oldsize) >= this value.
10451074
1046- Return ModelEvaluator instance if fit changed, otherwise None.
1075+ Returns
1076+ -------
1077+ ModelEvaluator or None
1078+ Return ModelEvaluator instance if fit changed, otherwise None.
10471079 """
10481080 if self .never_fit :
10491081 return None
@@ -1115,10 +1147,16 @@ def reduce_to(self, x, y):
11151147 a maximum very close to x may prevent optimal results.
11161148
11171149 Parameters
1118- x - Position at which to match
1119- y - Height to match.
1150+ ----------
1151+ x : array-like
1152+ The position at which to match
1153+ y : array-like
1154+ The height to match.
11201155
1121- Return ModelEvaluator instance if fit changed, otherwise None."""
1156+ Returns
1157+ -------
1158+ ModelEvaluator or None
1159+ Return ModelEvaluator instance if fit changed, otherwise None."""
11221160 # No reduction neccessary
11231161 if self .model .value (x ) < y :
11241162 logger .debug ("reduce_to: No reduction necessary." )
@@ -1142,7 +1180,19 @@ def reduce_to(self, x, y):
11421180 return quality
11431181
11441182 def value (self , r = None ):
1145- """Return value of baseline+model over cluster."""
1183+ """Return value of baseline+model over cluster.
1184+
1185+ Parameters
1186+ ----------
1187+ r : array-like, optional
1188+ value(s) over which to calculate the baseline's value.
1189+ The default is over the entire cluster.
1190+
1191+ Returns
1192+ -------
1193+ float
1194+ The value of baseline+model over cluster.
1195+ """
11461196 if len (self .model ) == 0 :
11471197 return self .valuebl (r )
11481198 else :
@@ -1157,8 +1207,14 @@ def valuebl(self, r=None):
11571207 If no baseline exists its value is 0 everywhere.
11581208
11591209 Parameters
1210+ ----------
11601211 r - value(s) over which to calculate the baseline's value.
11611212 The default is over the entire cluster.
1213+
1214+ Returns
1215+ -------
1216+ float
1217+ The value of baseline's value.
11621218 """
11631219 if self .baseline is None :
11641220 if r is None :
@@ -1183,10 +1239,18 @@ def quality(self, evaluator=None, **kwds):
11831239 details see ModelEvaluator documentation.
11841240
11851241 Parameters
1186- evaluator - A ModelEvaluator class (not instance) to use instead of default.
1242+ ----------
1243+ evaluator : ModelEvaluator class or None
1244+ The ModelEvaluator class to use. Default is None.
11871245
11881246 Keywords
1247+ --------
11891248 kwds - Keyword arguments passed the the ModelEvaluator's evaluate() method.
1249+
1250+ Returns
1251+ -------
1252+ ModelEvaluator instance
1253+ The ModelEvaluator instance with quality calculated
11901254 """
11911255 if evaluator is None :
11921256 evaluator_inst = self .error_method ()
@@ -1199,7 +1263,14 @@ def plottable(self, joined=False):
11991263 """Return sequence suitable for plotting cluster model+baseline with matplotlib.
12001264
12011265 Parameters
1202- joined - Return sum of all peaks, or each one individually.
1266+ ----------
1267+ joined : bool
1268+ Return sum of all peaks if joined is True, or each one individually if False.
1269+
1270+ Returns
1271+ -------
1272+ array-like
1273+ A sequence of plottable objects.
12031274 """
12041275 if joined :
12051276 return [self .r_cluster , self .y_cluster , self .r_cluster , self .value ()]
@@ -1212,14 +1283,26 @@ def plottable(self, joined=False):
12121283 return toreturn
12131284
12141285 def plottable_residual (self ):
1215- """Return sequence suitable for plotting cluster residual with matplotlib."""
1286+ """Return sequence suitable for plotting cluster residual with matplotlib.
1287+
1288+ Returns
1289+ -------
1290+ array-like
1291+ A sequence of plottable clusters and residuals.
1292+ """
12161293 return [self .r_cluster , self .residual ()]
12171294
12181295 def augment (self , source ):
12191296 """Add peaks from another ModelCluster that improve this one's quality.
12201297
12211298 Parameters
1222- source - A ModelCluster instance
1299+ ----------
1300+ source : ModelCluster instance
1301+ The ModelCluster instance to augment the model's quality.
1302+
1303+ Returns
1304+ -------
1305+ None
12231306 """
12241307 best_model = self .model .copy ()
12251308 best_qual = self .quality ()
0 commit comments