{leetcode}/problems/minimum-sideway-jumps/[LeetCode - 1824. Minimum Sideway Jumps ^]
There is a 3 lane road of length n
that consists of n + 1
points labeled from 0
to n
. A frog starts at point 0
in the second *lane *and wants to jump to point n
. However, there could be obstacles along the way.
You are given an array obstacles
of length n + 1
where each obstacles[i]
(ranging from 0 to 3) describes an obstacle on the lane obstacles[i]
at point i
. If obstacles[i] == 0
, there are no obstacles at point i
. There will be at most one obstacle in the 3 lanes at each point.
-
For example, if
obstacles[2] == 1
, then there is an obstacle on lane 1 at point 2.
The frog can only travel from point i
to point i + 1
on the same lane if there is not an obstacle on the lane at point i + 1
. To avoid obstacles, the frog can also perform a side jump to jump to another lane (even if they are not adjacent) at the same point if there is no obstacle on the new lane.
-
For example, the frog can jump from lane 3 at point 3 to lane 1 at point 3.
Return_ the minimum number of side jumps the frog needs to reach any lane at point n starting from lane 2
at point 0._
Note: There will be no obstacles on points 0
and n
.
Example 1: <img alt="" src="https://assets.leetcode.com/uploads/2021/03/25/ic234-q3-ex1.png" style="width: 500px; height: 244px;" />
Input: obstacles = [0,1,2,3,0] Output: 2 Explanation: The optimal solution is shown by the arrows above. There are 2 side jumps (red arrows). Note that the frog can jump over obstacles only when making side jumps (as shown at point 2).
Example 2: <img alt="" src="https://assets.leetcode.com/uploads/2021/03/25/ic234-q3-ex2.png" style="width: 500px; height: 196px;" />
Input: obstacles = [0,1,1,3,3,0] Output: 0 Explanation: There are no obstacles on lane 2. No side jumps are required.
Example 3: <img alt="" src="https://assets.leetcode.com/uploads/2021/03/25/ic234-q3-ex3.png" style="width: 500px; height: 196px;" />
Input: obstacles = [0,2,1,0,3,0] Output: 2 Explanation: The optimal solution is shown by the arrows above. There are 2 side jumps.
Constraints:
-
obstacles.length == n + 1
-
1 ⇐ n ⇐ 5 * 105
-
0 ⇐ obstacles[i] ⇐ 3
-
obstacles[0] == obstacles[n] == 0