{leetcode}/problems/maximum-strength-of-k-disjoint-subarrays/[LeetCode - 3077. Maximum Strength of K Disjoint Subarrays ^]
You are given an array of integers nums
with length n
, and a positive odd integer k
.
Select exactly k
disjoint <span data-keyword="subarray-nonempty">subarrays sub<sub>1</sub>, sub<sub>2</sub>, …, sub<sub>k</sub>
from nums
such that the last element of sub<sub>i</sub>
appears before the first element of sub<sub>{i+1}</sub>
for all 1 ⇐ i ⇐ k-1
. The goal is to maximize their combined strength.
The strength of the selected subarrays is defined as:
strength = k * sum(sub<sub>1</sub>)- (k - 1) * sum(sub<sub>2</sub>) + (k - 2) * sum(sub<sub>3</sub>) - … - 2 * sum(sub<sub>{k-1}</sub>) + sum(sub<sub>k</sub>)
where sum(sub<sub>i</sub>)
is the sum of the elements in the i
-th subarray.
Return the maximum possible strength that can be obtained from selecting exactly k
disjoint subarrays from nums
.
Note that the chosen subarrays don’t need to cover the entire array.
Example 1:
Input: <span class="example-io">nums = [1,2,3,-1,2], k = 3
Output: <span class="example-io">22
Explanation:
The best possible way to select 3 subarrays is: nums[0..2], nums[3..3], and nums[4..4]. The strength is calculated as follows:
strength = 3 * (1 + 2 + 3) - 2 * (-1) + 2 = 22
Example 2:
Input: <span class="example-io">nums = [12,-2,-2,-2,-2], k = 5
Output: <span class="example-io">64
Explanation:
The only possible way to select 5 disjoint subarrays is: nums[0..0], nums[1..1], nums[2..2], nums[3..3], and nums[4..4]. The strength is calculated as follows:
strength = 5 * 12 - 4 * (-2) + 3 * (-2) - 2 * (-2) + (-2) = 64
Example 3:
Input: <span class="example-io">nums = [-1,-2,-3], k = 1
Output: <span class="example-io">-1
Explanation:
The best possible way to select 1 subarray is: nums[0..0]. The strength is -1.
Constraints:
-
1 ⇐ n ⇐ 104
-
-109 ⇐ nums[i] ⇐ 109
-
1 ⇐ k ⇐ n
-
1 ⇐ n * k ⇐ 106
-
k
is odd.