-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolorgan.py
executable file
·258 lines (180 loc) · 6.84 KB
/
colorgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#
'''Based on;
[1] Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional
generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
And
https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/
by Jason Brownlee on July 1, 2019 in Generative Adversarial Networks
'''
#
import os
from os import listdir
from os.path import isfile, join
import numpy as np
from numpy import ones
from numpy.random import randint
import math
from PIL import Image
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Activation, Dense, Input
from tensorflow.keras.layers import Conv2D, Flatten, Dropout
from tensorflow.keras.layers import Reshape, Conv2DTranspose
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.optimizers import RMSprop, Adam
from tensorflow.keras.models import Model
from tensorflow.keras.models import load_model
#
# The discriminator
#
def build_discriminator(input_shape):
kernelsize = (3,3)
model = Sequential(name='discriminator')
# normal
model.add(Conv2D(64, kernel_size=kernelsize, padding='same', input_shape=input_shape))
model.add(LeakyReLU(alpha=0.2))
# downsample
model.add(Conv2D(128,kernel_size=kernelsize, strides=(2,2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
# downsample
model.add(Conv2D(128, kernel_size=kernelsize, strides=(2,2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(256, kernel_size=kernelsize, strides=(2,2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
# classifier
model.add(Flatten())
model.add(Dropout(0.4))
model.add(Dense(1, activation='sigmoid'))
# compile model
opt = Adam(lr=0.0002, beta_1=0.5)
return model
#
# The Generator
#
def build_generator(inputs, latent_size):
kernelsize = (3,3)
model = Sequential(name='generator')
n_nodes = 1024 * 48 * 48
model.add(Dense(n_nodes, input_dim=latent_size))
model.add(LeakyReLU(alpha=0.2))
model.add(Reshape((48, 48, 1024)))
model.add(Conv2DTranspose(128, kernel_size=kernelsize, strides=(2,2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(128,kernel_size= kernelsize, strides=(2,2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(256,kernel_size= kernelsize, strides=(2,2), padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2DTranspose(256,kernel_size= kernelsize, padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Conv2D(3, kernel_size= kernelsize, activation='tanh', padding='same'))
return model
#
# Model building
#
def build_models(image_size, latent_size, model_name):
# Learning rate
lr = 2e-4
# Learning rate decay
decay = 6e-8
# Input shape image
input_shape = (image_size, image_size, 3)
# build the discriminator
inputs = Input(shape=input_shape, name='discriminator_input')
discriminator = build_discriminator(input_shape)
optimizer = RMSprop(lr=lr, decay=decay)
discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
discriminator.trainable = False
discriminator.summary()
# build the generator
input_shape = (latent_size,)
inputs = Input(shape=input_shape, name='z_input')
generator = build_generator(inputs, latent_size)
generator.summary()
# gan = generator + discriminator
optimizer = RMSprop(lr=lr * 0.5, decay=decay * 0.5)
gan = Model(inputs, discriminator(generator(inputs)), name=model_name)
gan.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
gan.summary()
models = (generator, discriminator, gan)
return models
#
# Training
#
def train(models, x_train, batch_size, latent_size, train_steps, save_interval, model_name):
generator, discriminator, gan = models
# noise vectors x 5, to see the development on 5 different latent spaces
noise_input = []
for x in range(5):
noise_input.append(np.random.uniform(-1.0, 1.0, size=[1, latent_size]))
train_size = x_train.shape[0]
try:
for i in range(train_steps):
rand_indexes = np.random.randint(0, train_size, size=batch_size)
real_images = x_train[rand_indexes]
noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_size])
fake_images = generator.predict(noise)
x = np.concatenate((real_images, fake_images))
# Real is 1, Fake is 0
y = np.ones([2 * batch_size, 1])
y[batch_size:, :] = 0.0
loss, acc = discriminator.train_on_batch(x, y)
log = "%d: [discriminator loss: %f, acc: %f]" % (i, loss, acc)
noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_size])
y = np.ones([batch_size, 1])
loss, acc = gan.train_on_batch(noise, y)
log = "%s [gan loss: %f, acc: %f]" % (log, loss, acc)
print(log)
if (i + 1) % save_interval == 0:
for x in range(5):
save_image(generator, noise_input=noise_input[x], show=False, name="image_" + str(i) + "_" + str(x), model_name=model_name)
except KeyboardInterrupt:
pass
save_models(generator, discriminator, gan)
exit()
def save_models(generator, discriminator, gan):
generator.save(model_name + "_generator.h5")
discriminator.save(model_name + "_discriminator.h5")
gan.save(model_name + "_gan.h5")
# predict
def predict(latent_size):
generator = load_model(model_name + "_generator.h5")
noise_input = np.random.uniform(-1.0, 1.0, size=[1, latent_size])
save_image(generator,noise_input=noise_input, show=True, model_name="predict_outputs")
# save image
def save_image(generator, noise_input, show=False, name="test", model_name="gan"):
os.makedirs(model_name, exist_ok=True)
filename = os.path.join(model_name, name + ".png")
imagedata = generator.predict(noise_input)[0]
image = Image.fromarray(np.uint8(imagedata*255))
image.save(filename,"png")
if __name__ == "__main__":
test = False
model_name = "cheesecake_gan"
image_src_dir = "./cheesecake/"
latent_size = 100
# Same for x,y for now
image_size = 384
if test:
predict(latent_size)
else:
#Increase batch size if more available memory or smaller image size
batch_size = 16
# CTRL-C will also save the models.
train_steps = 55000
save_interval = 500
dircontent = listdir(image_src_dir)
onlyimages = [f for f in dircontent if f.endswith(".jpg") ]
x_train = np.empty([0,image_size,image_size,3])
for f in onlyimages:
image = Image.open(image_src_dir + f)
image_array = np.asarray(image)
#print(image_array.shape,f)
x_train = np.append(x_train,[image_array],axis=0)
x_train = np.reshape(x_train, [-1, image_size, image_size, 3])
x_train = x_train.astype('float32') / 255
print("loaded images : ", x_train.shape)
print(x_train.shape)
models = build_models(image_size, latent_size, model_name)
train(models, x_train, batch_size, latent_size, train_steps, save_interval, model_name)