This repository was archived by the owner on May 29, 2023. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathexport_model.py
56 lines (46 loc) · 1.78 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import argparse
import torch
import torch.nn as nn
from torch.autograd import Variable
from .unpool import Unpool2d
np.random.seed(324)
torch.manual_seed(32)
class MyModel(nn.Module):
def __init__(self, mode):
super(MyModel, self).__init__()
self.mode = mode
self.pool = nn.MaxPool2d(2, stride=2, return_indices=True)
self.conv1 = nn.Conv2d(3, 4, kernel_size=1, stride=1)
self.conv2 = nn.Conv2d(4, 4, kernel_size=1, stride=1)
self.unpool = Unpool2d()
def forward(self, x):
y = self.conv1(x)
output, indices = self.pool(y)
conv = self.conv2(output)
if self.mode == 'default':
return self.unpool.apply(conv, indices)
elif self.mode == 'dynamic_size':
return self.unpool.apply(conv, indices, x)
else:
raise Exception('Unknown mode: ' + self.mode)
def export(mode, shape=[5, 3, 6, 8]):
np.random.seed(324)
torch.manual_seed(32)
model = MyModel(mode)
inp = Variable(torch.randn(shape))
model.eval()
with torch.no_grad():
torch.onnx.export(model, inp, 'model.onnx',
input_names=['input'],
output_names=['output'],
operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK)
ref = model(inp)
np.save('inp', inp.detach().numpy())
np.save('ref', ref.detach().numpy())
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Generate ONNX model and test data')
parser.add_argument('--mode', choices=['default', 'dynamic_size'], help='Specify Unpooling behavior')
parser.add_argument('--shape', type=int, nargs='+', default=[5, 3, 6, 8])
args = parser.parse_args()
export(args.mode, args.shape)