Skip to content

Commit 8427891

Browse files
committed
Reimplement lambdamart ndcg.
* Simplify the implementation for both CPU and GPU. Fix JSON IO. Check labels. Put idx into cache. Optimize. File tag. Weights. Trivial tests. Compatibility. Lint. Fix swap. Device weight. tidy. Easier to read R failure. enum. Fix global configuration. Tidy. msvc omp. dask. Remove ndcg specific parameter. Drop label type for smaller PR. Fix rebase. Fixes. Don't mess with includes. Fixes. Format. Use omp util. Restore some old code. Revert. Port changes from the work on quantile loss. python binding. param. Cleanup. conditional parallel. types. Move doc. fix. need metric rewrite. rename ctx. extract. Work on metric. Metric Init estimation. extract tests, compute ties. cleanup. notes. extract optional weights. init. cleanup. old metric format. note. ndcg cache. nested. debug. fix. log2. Begin CUDA work. temp. Extract sort and latest cuda. truncation. dcg. dispatch. try different gain type. start looking into ub. note. consider writing a doc. check exp gain. Reimplement lambdamart ndcg. * Simplify the implementation for both CPU and GPU. Fix JSON IO. Check labels. Put idx into cache. Optimize. File tag. Weights. Trivial tests. Compatibility. Lint. Fix swap. Device weight. tidy. Easier to read R failure. enum. Fix global configuration. Tidy. msvc omp. dask. Remove ndcg specific parameter. Drop label type for smaller PR. Fix rebase. Fixes. Don't mess with includes. Fixes. Format. Use omp util. Restore some old code. Revert. Port changes from the work on quantile loss. python binding. param. Cleanup. conditional parallel. types. Move doc. fix. need metric rewrite. rename ctx. extract. Work on metric. Metric Init estimation. extract tests, compute ties. cleanup. notes. extract optional weights. init. cleanup. old metric format. note. ndcg cache. nested. debug. fix. log2. Begin CUDA work. temp. Extract sort and latest cuda. truncation. dcg. dispatch. try different gain type. start looking into ub. note. consider writing a doc. check exp gain. Start looking into unbiased. lambda. Extract the ndcg cache. header. cleanup namespace. small check. namespace. init with param. gain. extract. groups. Cleanup. disable. debug. remove. Revert "remove." This reverts commit ea025f9. sigmoid. cleanup. metric name. check scores. note. check map. extract utilities. avoid inline. fix. header. extract more. note. note. note. start working on map. fix. continue map. map. matrix. Remove map. note. format. move check. cleanup. use cached discount, use double. cleanup. Add position to the Python interface. pass it into lambda. Full ratio. rank. comment. some work on GPU. compile. move cache initialization. descending. Fix arg sort. basic ndcg score. metric weight. config. extract. pass position again. Define a metric decorator. position. decorate metric.. return. note. irrelevant docs. fix weights. header. Share the bias. Use position check info. use cache for param. note. prepare to work on deterministic gpu. rounding. Extract op. cleanup. Use it. check label. ditch launchn. rounding. Move rounding into cache. fix check label. GPU fixes. Irrelevant doc. try to avoid inf. mad. Work on metric cache. Cleanup sort. use cache. cache others. revert. add test for metric. fixes. msg. note. remove reduce by key. comments. check position. stream. min. small cleanup. use atomic for now. fill. no inline. norm. remove op. start gpu. cleanup. use gpu for update. segmented reduce. revert. comments. comments. fix. comments. fix bounds. comments. cache. pointer. fixes. no spark. revert. Cleanup. cleanup. work on gain type. fix. notes. make metric name. remove. revert. revert. comment. revert. Move back into rank metric. Set name in objective. fix. Don't configure. note. merge tests. accept empty group. fixes. float. revert and fix. not mutable. prototype for cache. extract. convert to DMatrix. cache. Extract the cache. Port changes. fix & cleanup. cleanup. cleanup. Rename. restore. remove. header. revert. rename. rename. doc. cleanup. doc. cleanup. tests. tests. split up. jvm parameters. doc. Fix. Use cache in cox. Revert "Use cache in cox." This reverts commit e1cec37. Remove pairwise. iwyu. rename. Move. Merge. ranking utils. Fixes. rename. Comments. todos. Small cleanup. doc. Start working on demo. move some code here. rename. Update doc. Update doc. Work on demo. work on demo. demo. Demo. Specify the max rel degree. remove position. Fix. Work on demo. demo. Using only one fold. cache. demo. schema. comments. Lint. fix test. automake. macos. schema. test. schema. lint. fix tests. Implement MAP and pair sampling. revert sorting. Work on ranknet. remove. Don't upgrade cost if larger than. Extract GPU make pairs. error message. Remove. Cleanup some gpu tests. Move. Move NDCG test. fix weights. Move rest of the tests. Remove. Work on tests. fixes. Cleanup. header. cleanup. Update document. update document. fix build. cpplint. rename. Fixes and cleanup. Cleanup tests. lint. fix tests. debug macos non-openmp checks. macos. fix ndcg test. Ensure number of threads is smaller than the number of inputs. fix. Debug macos. fixes. Add weight normalization. Note on reproducible result. Don't normalize if it's binary. old ctk. Use old objective. Update doc. Convert pyspark tests. black. Fix rebase. Fix rebase. Start looking into CV. Hacky score function. extract parsing. Cleanup and tests. Lint & note. test check. Update document. Update tests & doc. Support custom metric as well. c++-17. cleanup old metrics. rename. Fixes. Fix cxx test. test cudf. start converting tests. pylint. fix data load. Cleanup the tests. Parameter tests. isort. Fix test. Specify src path for isort. 17 goodies. Fix rebase. Start working on ranking cache tests. Extract CPU impl. test debiasing. use index. ranking cache. comment. some work on debiasing. save the estimated bias. normalize by default. GPU norm. fix gpu unbiased. cleanup. cleanup. Remove workaround. Default to topk. Restore. Cleanup. Revert change in algorithm. norm. Move data generation process in testing for reuse. Move sort samples as well. cleanup. Generate data. lint. pylint. Fix. Fix spark test. avoid sampling with unbiased. Cleanup demo. Handle single group simulation. Numeric issues. More numeric issues. sigma. naming. Simple test. tests. brief description. Revert "brief description." This reverts commit 0b3817a. rebase. symbol. Rebase. disable normalization. Revert "disable normalization." This reverts commit ef3133d2b4a76714f3514808c6e2ae5937e6a8c2. unused variable. Apply suggestions from code review Co-authored-by: Philip Hyunsu Cho <[email protected]> Use dataclass. Fix return type. doc. Minor fixes. Add test for custom gain. cleanup. wording. start working on precision. comments. initial work on precision. Cleanup GPU ranking metric. rigorous. work on test. adjust test. Tests. Work on binary classification support. cpu. mention it in document. callback. tests.
1 parent 9fbde21 commit 8427891

File tree

24 files changed

+875
-43
lines changed

24 files changed

+875
-43
lines changed

demo/guide-python/learning_to_rank.py

+212
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,212 @@
1+
"""
2+
Getting started with learning to rank
3+
=====================================
4+
5+
.. versionadded:: 2.0.0
6+
7+
This is a demonstration of using XGBoost for learning to rank tasks using the
8+
MSLR_10k_letor dataset. For more infomation about the dataset, please visit its
9+
`description page <https://www.microsoft.com/en-us/research/project/mslr/>`_.
10+
11+
This is a two-part demo, the first one contains a basic example of using XGBoost to
12+
train on relevance degree, and the second part simulates click data and enable the
13+
position debiasing training.
14+
15+
For an overview of learning to rank in XGBoost, please see
16+
:doc:`Learning to Rank </tutorials/learning_to_rank>`.
17+
"""
18+
from __future__ import annotations
19+
20+
import argparse
21+
import json
22+
import os
23+
import pickle as pkl
24+
25+
import numpy as np
26+
import pandas as pd
27+
from sklearn.datasets import load_svmlight_file
28+
29+
import xgboost as xgb
30+
from xgboost.testing.data import RelDataCV, simulate_clicks, sort_ltr_samples
31+
32+
33+
def load_mlsr_10k(data_path: str, cache_path: str) -> RelDataCV:
34+
"""Load the MSLR10k dataset from data_path and cache a pickle object in cache_path.
35+
36+
Returns
37+
-------
38+
39+
A list of tuples [(X, y, qid), ...].
40+
41+
"""
42+
root_path = os.path.expanduser(args.data)
43+
cacheroot_path = os.path.expanduser(args.cache)
44+
cache_path = os.path.join(cacheroot_path, "MSLR_10K_LETOR.pkl")
45+
46+
# Use only the Fold1 for demo:
47+
# Train, Valid, Test
48+
# {S1,S2,S3}, S4, S5
49+
fold = 1
50+
51+
if not os.path.exists(cache_path):
52+
fold_path = os.path.join(root_path, f"Fold{fold}")
53+
train_path = os.path.join(fold_path, "train.txt")
54+
valid_path = os.path.join(fold_path, "vali.txt")
55+
test_path = os.path.join(fold_path, "test.txt")
56+
X_train, y_train, qid_train = load_svmlight_file(
57+
train_path, query_id=True, dtype=np.float32
58+
)
59+
y_train = y_train.astype(np.int32)
60+
qid_train = qid_train.astype(np.int32)
61+
62+
X_valid, y_valid, qid_valid = load_svmlight_file(
63+
valid_path, query_id=True, dtype=np.float32
64+
)
65+
y_valid = y_valid.astype(np.int32)
66+
qid_valid = qid_valid.astype(np.int32)
67+
68+
X_test, y_test, qid_test = load_svmlight_file(
69+
test_path, query_id=True, dtype=np.float32
70+
)
71+
y_test = y_test.astype(np.int32)
72+
qid_test = qid_test.astype(np.int32)
73+
74+
data = RelDataCV(
75+
train=(X_train, y_train, qid_train),
76+
test=(X_test, y_test, qid_test),
77+
max_rel=4,
78+
)
79+
80+
with open(cache_path, "wb") as fd:
81+
pkl.dump(data, fd)
82+
83+
with open(cache_path, "rb") as fd:
84+
data = pkl.load(fd)
85+
86+
return data
87+
88+
89+
def ranking_demo(args: argparse.Namespace) -> None:
90+
"""Demonstration for learning to rank with relevance degree."""
91+
data = load_mlsr_10k(args.data, args.cache)
92+
93+
# Sort data according to query index
94+
X_train, y_train, qid_train = data.train
95+
sorted_idx = np.argsort(qid_train)
96+
X_train = X_train[sorted_idx]
97+
y_train = y_train[sorted_idx]
98+
qid_train = qid_train[sorted_idx]
99+
100+
X_test, y_test, qid_test = data.test
101+
sorted_idx = np.argsort(qid_test)
102+
X_test = X_test[sorted_idx]
103+
y_test = y_test[sorted_idx]
104+
qid_test = qid_test[sorted_idx]
105+
106+
ranker = xgb.XGBRanker(
107+
tree_method="gpu_hist",
108+
lambdarank_pair_method="topk",
109+
lambdarank_num_pair_per_sample=13,
110+
eval_metric=["ndcg@1", "ndcg@8"],
111+
)
112+
ranker.fit(
113+
X_train,
114+
y_train,
115+
qid=qid_train,
116+
eval_set=[(X_test, y_test)],
117+
eval_qid=[qid_test],
118+
verbose=True,
119+
)
120+
121+
122+
def click_data_demo(args: argparse.Namespace) -> None:
123+
"""Demonstration for learning to rank with click data."""
124+
data = load_mlsr_10k(args.data, args.cache)
125+
train, test = simulate_clicks(data)
126+
assert test is not None
127+
128+
assert train.X.shape[0] == train.click.size
129+
assert test.X.shape[0] == test.click.size
130+
assert test.score.dtype == np.float32
131+
assert test.click.dtype == np.int32
132+
133+
X_train, clicks_train, y_train, qid_train = sort_ltr_samples(
134+
train.X,
135+
train.y,
136+
train.qid,
137+
train.click,
138+
train.pos,
139+
)
140+
X_test, clicks_test, y_test, qid_test = sort_ltr_samples(
141+
test.X,
142+
test.y,
143+
test.qid,
144+
test.click,
145+
test.pos,
146+
)
147+
148+
class ShowPosition(xgb.callback.TrainingCallback):
149+
def after_iteration(
150+
self,
151+
model: xgb.Booster,
152+
epoch: int,
153+
evals_log: xgb.callback.TrainingCallback.EvalsLog,
154+
) -> bool:
155+
config = json.loads(model.save_config())
156+
ti_plus = np.array(config["learner"]["objective"]["ti+"])
157+
tj_minus = np.array(config["learner"]["objective"]["tj-"])
158+
df = pd.DataFrame({"ti+": ti_plus, "tj-": tj_minus})
159+
print(df)
160+
return False
161+
162+
ranker = xgb.XGBRanker(
163+
n_estimators=512,
164+
tree_method="gpu_hist",
165+
learning_rate=0.01,
166+
reg_lambda=1.5,
167+
subsample=0.8,
168+
sampling_method="gradient_based",
169+
# LTR specific parameters
170+
objective="rank:ndcg",
171+
# - Enable bias estimation
172+
lambdarank_unbiased=True,
173+
# - normalization (1 / (norm + 1))
174+
lambdarank_bias_norm=1,
175+
# - Focus on the top 12 documents
176+
lambdarank_num_pair_per_sample=12,
177+
lambdarank_pair_method="topk",
178+
ndcg_exp_gain=True,
179+
eval_metric=["ndcg@1", "ndcg@3", "ndcg@5", "ndcg@10"],
180+
callbacks=[ShowPosition()],
181+
)
182+
ranker.fit(
183+
X_train,
184+
clicks_train,
185+
qid=qid_train,
186+
eval_set=[(X_test, y_test), (X_test, clicks_test)],
187+
eval_qid=[qid_test, qid_test],
188+
verbose=True,
189+
)
190+
ranker.predict(X_test)
191+
192+
193+
if __name__ == "__main__":
194+
parser = argparse.ArgumentParser(
195+
description="Demonstration of learning to rank using XGBoost."
196+
)
197+
parser.add_argument(
198+
"--data",
199+
type=str,
200+
help="Root directory of the MSLR-WEB10K data.",
201+
required=True,
202+
)
203+
parser.add_argument(
204+
"--cache",
205+
type=str,
206+
help="Directory for caching processed data.",
207+
required=True,
208+
)
209+
args = parser.parse_args()
210+
211+
ranking_demo(args)
212+
click_data_demo(args)

doc/contrib/coding_guide.rst

+3-1
Original file line numberDiff line numberDiff line change
@@ -16,8 +16,10 @@ C++ Coding Guideline
1616
* Each line of text may contain up to 100 characters.
1717
* The use of C++ exceptions is allowed.
1818

19-
- Use C++11 features such as smart pointers, braced initializers, lambda functions, and ``std::thread``.
19+
- Use C++17 features such as smart pointers, braced initializers, lambda functions, and ``std::thread``.
2020
- Use Doxygen to document all the interface code.
21+
- We have some comments around symbols imported by headers, some of those are hinted by `include-what-you-use <https://include-what-you-use.org>`_. It's not required.
22+
- We use clang-tidy and clang-format. You can check their configuration in the root directory of the XGBoost source tree.
2123
- We have a series of automatic checks to ensure that all of our codebase complies with the Google style. Before submitting your pull request, you are encouraged to run the style checks on your machine. See :ref:`running_checks_locally`.
2224

2325
***********************

doc/parameter.rst

+1
Original file line numberDiff line numberDiff line change
@@ -425,6 +425,7 @@ Specify the learning task and the corresponding learning objective. The objectiv
425425
After XGBoost 1.6, both of the requirements and restrictions for using ``aucpr`` in classification problem are similar to ``auc``. For ranking task, only binary relevance label :math:`y \in [0, 1]` is supported. Different from ``map (mean average precision)``, ``aucpr`` calculates the *interpolated* area under precision recall curve using continuous interpolation.
426426

427427
- ``pre``: Precision at :math:`k`. Supports only learning to rank task.
428+
428429
- ``ndcg``: `Normalized Discounted Cumulative Gain <http://en.wikipedia.org/wiki/NDCG>`_
429430
- ``map``: `Mean Average Precision <http://en.wikipedia.org/wiki/Mean_average_precision#Mean_average_precision>`_
430431

doc/tutorials/index.rst

+1
Original file line numberDiff line numberDiff line change
@@ -21,6 +21,7 @@ See `Awesome XGBoost <https://github.com/dmlc/xgboost/tree/master/demo>`_ for mo
2121
monotonic
2222
rf
2323
feature_interaction_constraint
24+
learning_to_rank
2425
aft_survival_analysis
2526
c_api_tutorial
2627
input_format

0 commit comments

Comments
 (0)