|
| 1 | +"""Wrapper around in-memory DocArray store.""" |
| 2 | +from __future__ import annotations |
| 3 | + |
| 4 | +from operator import itemgetter |
| 5 | +from typing import List, Optional, Any, Tuple, Iterable, Type, Callable, Sequence, TYPE_CHECKING |
| 6 | + |
| 7 | +from langchain.embeddings.base import Embeddings |
| 8 | +from langchain.schema import Document |
| 9 | +from langchain.vectorstores import VectorStore |
| 10 | +from langchain.vectorstores.base import VST |
| 11 | +from langchain.vectorstores.utils import maximal_marginal_relevance |
| 12 | + |
| 13 | +from docarray import BaseDoc |
| 14 | +from docarray.typing import NdArray |
| 15 | + |
| 16 | + |
| 17 | +class HnswLib(VectorStore): |
| 18 | + """Wrapper around HnswLib storage. |
| 19 | +
|
| 20 | + To use it, you should have the ``docarray`` package with version >=0.30.0 installed. |
| 21 | + """ |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + work_dir: str, |
| 25 | + n_dim: int, |
| 26 | + texts: List[str], |
| 27 | + embedding: Embeddings, |
| 28 | + metadatas: Optional[List[dict]], |
| 29 | + sim_metric: str = 'cosine', |
| 30 | + kwargs: dict = None |
| 31 | + ) -> None: |
| 32 | + """Initialize HnswLib store.""" |
| 33 | + try: |
| 34 | + import docarray |
| 35 | + da_version = docarray.__version__.split('.') |
| 36 | + if int(da_version[0]) == 0 and int(da_version[1]) <= 21: |
| 37 | + raise ValueError( |
| 38 | + f'To use the HnswLib VectorStore the docarray version >=0.30.0 is expected, ' |
| 39 | + f'received: {docarray.__version__}.' |
| 40 | + f'To upgrade, please run: `pip install -U docarray`.' |
| 41 | + ) |
| 42 | + else: |
| 43 | + from docarray import DocList |
| 44 | + from docarray.index import HnswDocumentIndex |
| 45 | + except ImportError: |
| 46 | + raise ImportError( |
| 47 | + "Could not import docarray python package. " |
| 48 | + "Please install it with `pip install -U docarray`." |
| 49 | + ) |
| 50 | + try: |
| 51 | + import google.protobuf |
| 52 | + except ImportError: |
| 53 | + raise ImportError( |
| 54 | + "Could not import protobuf python package. " |
| 55 | + "Please install it with `pip install -U protobuf`." |
| 56 | + ) |
| 57 | + |
| 58 | + if metadatas is None: |
| 59 | + metadatas = [{} for _ in range(len(texts))] |
| 60 | + |
| 61 | + self.embedding = embedding |
| 62 | + |
| 63 | + self.doc_cls = self._get_doc_cls(n_dim, sim_metric) |
| 64 | + self.doc_index = HnswDocumentIndex[self.doc_cls](work_dir=work_dir) |
| 65 | + embeddings = self.embedding.embed_documents(texts) |
| 66 | + docs = DocList[self.doc_cls]( |
| 67 | + [ |
| 68 | + self.doc_cls( |
| 69 | + text=t, |
| 70 | + embedding=e, |
| 71 | + metadata=m, |
| 72 | + ) for t, m, e in zip(texts, metadatas, embeddings) |
| 73 | + ] |
| 74 | + ) |
| 75 | + self.doc_index.index(docs) |
| 76 | + |
| 77 | + @staticmethod |
| 78 | + def _get_doc_cls(n_dim: int, sim_metric: str): |
| 79 | + from pydantic import Field |
| 80 | + |
| 81 | + class DocArrayDoc(BaseDoc): |
| 82 | + text: Optional[str] |
| 83 | + embedding: Optional[NdArray] = Field(dim=n_dim, space=sim_metric) |
| 84 | + metadata: Optional[dict] |
| 85 | + |
| 86 | + return DocArrayDoc |
| 87 | + |
| 88 | + @classmethod |
| 89 | + def from_texts( |
| 90 | + cls: Type[VST], |
| 91 | + texts: List[str], |
| 92 | + embedding: Embeddings, |
| 93 | + metadatas: Optional[List[dict]] = None, |
| 94 | + work_dir: str = None, |
| 95 | + n_dim: int = None, |
| 96 | + **kwargs: Any |
| 97 | + ) -> HnswLib: |
| 98 | + |
| 99 | + if work_dir is None: |
| 100 | + raise ValueError('`work_dir` parameter hs not been set.') |
| 101 | + if n_dim is None: |
| 102 | + raise ValueError('`n_dim` parameter has not been set.') |
| 103 | + |
| 104 | + return cls( |
| 105 | + work_dir=work_dir, |
| 106 | + n_dim=n_dim, |
| 107 | + texts=texts, |
| 108 | + embedding=embedding, |
| 109 | + metadatas=metadatas, |
| 110 | + kwargs=kwargs |
| 111 | + ) |
| 112 | + |
| 113 | + def add_texts( |
| 114 | + self, |
| 115 | + texts: Iterable[str], |
| 116 | + metadatas: Optional[List[dict]] = None, |
| 117 | + **kwargs: Any |
| 118 | + ) -> List[str]: |
| 119 | + """Run more texts through the embeddings and add to the vectorstore. |
| 120 | +
|
| 121 | + Args: |
| 122 | + texts: Iterable of strings to add to the vectorstore. |
| 123 | + metadatas: Optional list of metadatas associated with the texts. |
| 124 | +
|
| 125 | + Returns: |
| 126 | + List of ids from adding the texts into the vectorstore. |
| 127 | + """ |
| 128 | + if metadatas is None: |
| 129 | + metadatas = [{} for _ in range(len(list(texts)))] |
| 130 | + |
| 131 | + ids = [] |
| 132 | + embeddings = self.embedding.embed_documents(texts) |
| 133 | + for t, m, e in zip(texts, metadatas, embeddings): |
| 134 | + doc = self.doc_cls( |
| 135 | + text=t, |
| 136 | + embedding=e, |
| 137 | + metadata=m |
| 138 | + ) |
| 139 | + self.doc_index.index(doc) |
| 140 | + ids.append(doc.id) # TODO return index of self.docs ? |
| 141 | + |
| 142 | + return ids |
| 143 | + |
| 144 | + def similarity_search_with_score( |
| 145 | + self, query: str, k: int = 4, **kwargs: Any |
| 146 | + ) -> List[Tuple[Document, float]]: |
| 147 | + """Return docs most similar to query. |
| 148 | +
|
| 149 | + Args: |
| 150 | + query: Text to look up documents similar to. |
| 151 | + k: Number of Documents to return. Defaults to 4. |
| 152 | +
|
| 153 | + Returns: |
| 154 | + List of Documents most similar to the query and score for each. |
| 155 | + """ |
| 156 | + query_embedding = self.embedding.embed_query(query) |
| 157 | + query_embedding = [1., 1., 1., 1., 1., 1., 1., 1., 1., 0.] |
| 158 | + print(f"query_embedding = {query_embedding}") |
| 159 | + query_doc = self.doc_cls(embedding=query_embedding) |
| 160 | + docs, scores = self.doc_index.find(query_doc, search_field='embedding', limit=k) |
| 161 | + |
| 162 | + result = [(Document(page_content=doc.text), score) for doc, score in zip(docs, scores)] |
| 163 | + return result |
| 164 | + |
| 165 | + def similarity_search( |
| 166 | + self, query: str, k: int = 4, **kwargs: Any |
| 167 | + ) -> List[Document]: |
| 168 | + """Return docs most similar to query. |
| 169 | +
|
| 170 | + Args: |
| 171 | + query: Text to look up documents similar to. |
| 172 | + k: Number of Documents to return. Defaults to 4. |
| 173 | +
|
| 174 | + Returns: |
| 175 | + List of Documents most similar to the query. |
| 176 | + """ |
| 177 | + results = self.similarity_search_with_score(query, k) |
| 178 | + return list(map(itemgetter(0), results)) |
| 179 | + |
| 180 | + def _similarity_search_with_relevance_scores( |
| 181 | + self, |
| 182 | + query: str, |
| 183 | + k: int = 4, |
| 184 | + **kwargs: Any, |
| 185 | + ) -> List[Tuple[Document, float]]: |
| 186 | + """Return docs and relevance scores, normalized on a scale from 0 to 1. |
| 187 | +
|
| 188 | + 0 is dissimilar, 1 is most similar. |
| 189 | + """ |
| 190 | + raise NotImplementedError |
| 191 | + |
| 192 | + def similarity_search_by_vector(self, embedding: List[float], k: int = 4, **kwargs: Any) -> List[Document]: |
| 193 | + """Return docs most similar to embedding vector. |
| 194 | +
|
| 195 | + Args: |
| 196 | + embedding: Embedding to look up documents similar to. |
| 197 | + k: Number of Documents to return. Defaults to 4. |
| 198 | +
|
| 199 | + Returns: |
| 200 | + List of Documents most similar to the query vector. |
| 201 | + """ |
| 202 | + |
| 203 | + query_doc = self.doc_cls(embedding=embedding) |
| 204 | + docs = self.doc_index.find(query_doc, search_field='embedding', limit=k).documents |
| 205 | + |
| 206 | + result = [Document(page_content=doc.text) for doc in docs] |
| 207 | + return result |
| 208 | + |
| 209 | + def max_marginal_relevance_search( |
| 210 | + self, query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any |
| 211 | + ) -> List[Document]: |
| 212 | + """Return docs selected using the maximal marginal relevance. |
| 213 | +
|
| 214 | + Maximal marginal relevance optimizes for similarity to query AND diversity |
| 215 | + among selected documents. |
| 216 | +
|
| 217 | + Args: |
| 218 | + query: Text to look up documents similar to. |
| 219 | + k: Number of Documents to return. Defaults to 4. |
| 220 | + fetch_k: Number of Documents to fetch to pass to MMR algorithm. |
| 221 | +
|
| 222 | + Returns: |
| 223 | + List of Documents selected by maximal marginal relevance. |
| 224 | + """ |
| 225 | + query_embedding = self.embedding.embed_query(query) |
| 226 | + query_doc = self.doc_cls(embedding=query_embedding) |
| 227 | + |
| 228 | + docs, scores = self.doc_index.find(query_doc, search_field='embedding', limit=fetch_k) |
| 229 | + |
| 230 | + embeddings = [emb for emb in docs.emb] |
| 231 | + |
| 232 | + mmr_selected = maximal_marginal_relevance(query_embedding, embeddings, k=k) |
| 233 | + results = [Document(page_content=self.doc_index[idx].text) for idx in mmr_selected] |
| 234 | + return results |
| 235 | + |
0 commit comments