diff --git a/pandas/Practice.ipynb b/pandas/Practice.ipynb
new file mode 100644
index 00000000..b7c94161
--- /dev/null
+++ b/pandas/Practice.ipynb
@@ -0,0 +1,4755 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: pandas in c:\\users\\anonymous\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (1.3.5)\n",
+ "Requirement already satisfied: numpy>=1.21.0 in c:\\users\\anonymous\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pandas) (1.22.0)\n",
+ "Requirement already satisfied: python-dateutil>=2.7.3 in c:\\users\\anonymous\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pandas) (2.8.2)\n",
+ "Requirement already satisfied: pytz>=2017.3 in c:\\users\\anonymous\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from pandas) (2021.3)\n",
+ "Requirement already satisfied: six>=1.5 in c:\\users\\anonymous\\appdata\\local\\programs\\python\\python310\\lib\\site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING: You are using pip version 21.2.3; however, version 21.3.1 is available.\n",
+ "You should consider upgrading via the 'C:\\Users\\Anonymous\\AppData\\Local\\Programs\\Python\\Python310\\python.exe -m pip install --upgrade pip' command.\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install pandas"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Import Libraries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 1.0\n",
+ "1 3.0\n",
+ "2 NaN\n",
+ "3 5.0\n",
+ "4 6.0\n",
+ "5 8.0\n",
+ "6 9.0\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Object Creation\n",
+ "\n",
+ "s= pd.Series([1,3,np.nan,5,6,8,9])\n",
+ "s"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n",
+ " '2013-01-05', '2013-01-06'],\n",
+ " dtype='datetime64[ns]', freq='D')"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dates = pd.date_range(\"20130101\",periods=6)\n",
+ "dates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ " 0.379987 | \n",
+ " 0.244467 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ " 0.737714 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ " 0.061389 | \n",
+ " 0.381144 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ " 0.460837 | \n",
+ " 0.443352 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ " 0.042785 | \n",
+ " 0.498538 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ " 0.725100 | \n",
+ " 0.481234 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-01 0.403447 0.867925 0.379987 0.244467\n",
+ "2013-01-02 0.647245 0.527794 0.737714 0.732754\n",
+ "2013-01-03 0.968790 0.457411 0.061389 0.381144\n",
+ "2013-01-04 0.465454 0.933833 0.460837 0.443352\n",
+ "2013-01-05 0.732277 0.793085 0.042785 0.498538\n",
+ "2013-01-06 0.765932 0.282835 0.725100 0.481234"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.DataFrame(np.random.rand(6,4),index=dates,columns=list('ABCD'))\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ " 0.379987 | \n",
+ " 0.244467 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ " 0.737714 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ " 0.061389 | \n",
+ " 0.381144 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ " 0.460837 | \n",
+ " 0.443352 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ " 0.042785 | \n",
+ " 0.498538 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-01 0.403447 0.867925 0.379987 0.244467\n",
+ "2013-01-02 0.647245 0.527794 0.737714 0.732754\n",
+ "2013-01-03 0.968790 0.457411 0.061389 0.381144\n",
+ "2013-01-04 0.465454 0.933833 0.460837 0.443352\n",
+ "2013-01-05 0.732277 0.793085 0.042785 0.498538"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ " 0.042785 | \n",
+ " 0.498538 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ " 0.725100 | \n",
+ " 0.481234 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-05 0.732277 0.793085 0.042785 0.498538\n",
+ "2013-01-06 0.765932 0.282835 0.725100 0.481234"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.tail(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n",
+ " '2013-01-05', '2013-01-06'],\n",
+ " dtype='datetime64[ns]', freq='D')"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.index"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[0.40344748, 0.86792537, 0.37998743, 0.24446663],\n",
+ " [0.64724504, 0.52779364, 0.73771371, 0.73275415],\n",
+ " [0.96878978, 0.45741067, 0.06138895, 0.38114385],\n",
+ " [0.46545446, 0.93383332, 0.46083694, 0.44335186],\n",
+ " [0.73227729, 0.79308499, 0.04278515, 0.49853785],\n",
+ " [0.76593217, 0.28283498, 0.72510016, 0.48123367]])"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.to_numpy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 6.000000 | \n",
+ " 6.000000 | \n",
+ " 6.000000 | \n",
+ " 6.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 0.663858 | \n",
+ " 0.643814 | \n",
+ " 0.401302 | \n",
+ " 0.463581 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 0.207623 | \n",
+ " 0.258894 | \n",
+ " 0.305317 | \n",
+ " 0.160751 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 0.403447 | \n",
+ " 0.282835 | \n",
+ " 0.042785 | \n",
+ " 0.244467 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 0.510902 | \n",
+ " 0.475006 | \n",
+ " 0.141039 | \n",
+ " 0.396696 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 0.689761 | \n",
+ " 0.660439 | \n",
+ " 0.420412 | \n",
+ " 0.462293 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 0.757518 | \n",
+ " 0.849215 | \n",
+ " 0.659034 | \n",
+ " 0.494212 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 0.968790 | \n",
+ " 0.933833 | \n",
+ " 0.737714 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "count 6.000000 6.000000 6.000000 6.000000\n",
+ "mean 0.663858 0.643814 0.401302 0.463581\n",
+ "std 0.207623 0.258894 0.305317 0.160751\n",
+ "min 0.403447 0.282835 0.042785 0.244467\n",
+ "25% 0.510902 0.475006 0.141039 0.396696\n",
+ "50% 0.689761 0.660439 0.420412 0.462293\n",
+ "75% 0.757518 0.849215 0.659034 0.494212\n",
+ "max 0.968790 0.933833 0.737714 0.732754"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 2013-01-01 | \n",
+ " 2013-01-02 | \n",
+ " 2013-01-03 | \n",
+ " 2013-01-04 | \n",
+ " 2013-01-05 | \n",
+ " 2013-01-06 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " A | \n",
+ " 0.403447 | \n",
+ " 0.647245 | \n",
+ " 0.968790 | \n",
+ " 0.465454 | \n",
+ " 0.732277 | \n",
+ " 0.765932 | \n",
+ "
\n",
+ " \n",
+ " B | \n",
+ " 0.867925 | \n",
+ " 0.527794 | \n",
+ " 0.457411 | \n",
+ " 0.933833 | \n",
+ " 0.793085 | \n",
+ " 0.282835 | \n",
+ "
\n",
+ " \n",
+ " C | \n",
+ " 0.379987 | \n",
+ " 0.737714 | \n",
+ " 0.061389 | \n",
+ " 0.460837 | \n",
+ " 0.042785 | \n",
+ " 0.725100 | \n",
+ "
\n",
+ " \n",
+ " D | \n",
+ " 0.244467 | \n",
+ " 0.732754 | \n",
+ " 0.381144 | \n",
+ " 0.443352 | \n",
+ " 0.498538 | \n",
+ " 0.481234 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06\n",
+ "A 0.403447 0.647245 0.968790 0.465454 0.732277 0.765932\n",
+ "B 0.867925 0.527794 0.457411 0.933833 0.793085 0.282835\n",
+ "C 0.379987 0.737714 0.061389 0.460837 0.042785 0.725100\n",
+ "D 0.244467 0.732754 0.381144 0.443352 0.498538 0.481234"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.T"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ " 0.379987 | \n",
+ " 0.244467 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ " 0.737714 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ " 0.061389 | \n",
+ " 0.381144 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ " 0.460837 | \n",
+ " 0.443352 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ " 0.042785 | \n",
+ " 0.498538 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ " 0.725100 | \n",
+ " 0.481234 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-01 0.403447 0.867925 0.379987 0.244467\n",
+ "2013-01-02 0.647245 0.527794 0.737714 0.732754\n",
+ "2013-01-03 0.968790 0.457411 0.061389 0.381144\n",
+ "2013-01-04 0.465454 0.933833 0.460837 0.443352\n",
+ "2013-01-05 0.732277 0.793085 0.042785 0.498538\n",
+ "2013-01-06 0.765932 0.282835 0.725100 0.481234"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.sort_index(axis=0,ascending=False)\n",
+ "df.sort_index(axis=1, ascending=True)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ " 0.725100 | \n",
+ " 0.481234 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ " 0.061389 | \n",
+ " 0.381144 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ " 0.737714 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ " 0.042785 | \n",
+ " 0.498538 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ " 0.379987 | \n",
+ " 0.244467 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ " 0.460837 | \n",
+ " 0.443352 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-06 0.765932 0.282835 0.725100 0.481234\n",
+ "2013-01-03 0.968790 0.457411 0.061389 0.381144\n",
+ "2013-01-02 0.647245 0.527794 0.737714 0.732754\n",
+ "2013-01-05 0.732277 0.793085 0.042785 0.498538\n",
+ "2013-01-01 0.403447 0.867925 0.379987 0.244467\n",
+ "2013-01-04 0.465454 0.933833 0.460837 0.443352"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.sort_values(by=\"B\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2013-01-01 0.403447\n",
+ "2013-01-02 0.647245\n",
+ "2013-01-03 0.968790\n",
+ "2013-01-04 0.465454\n",
+ "2013-01-05 0.732277\n",
+ "2013-01-06 0.765932\n",
+ "Freq: D, Name: A, dtype: float64"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[\"A\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ " 0.379987 | \n",
+ " 0.244467 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ " 0.737714 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-01 0.403447 0.867925 0.379987 0.244467\n",
+ "2013-01-02 0.647245 0.527794 0.737714 0.732754"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[0:2]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ " 0.379987 | \n",
+ " 0.244467 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ " 0.737714 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ " 0.061389 | \n",
+ " 0.381144 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ " 0.460837 | \n",
+ " 0.443352 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ " 0.042785 | \n",
+ " 0.498538 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ " 0.725100 | \n",
+ " 0.481234 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-01 0.403447 0.867925 0.379987 0.244467\n",
+ "2013-01-02 0.647245 0.527794 0.737714 0.732754\n",
+ "2013-01-03 0.968790 0.457411 0.061389 0.381144\n",
+ "2013-01-04 0.465454 0.933833 0.460837 0.443352\n",
+ "2013-01-05 0.732277 0.793085 0.042785 0.498538\n",
+ "2013-01-06 0.765932 0.282835 0.725100 0.481234"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Row wise selection\n",
+ "df[0:10]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "A 0.403447\n",
+ "B 0.867925\n",
+ "C 0.379987\n",
+ "D 0.244467\n",
+ "Name: 2013-01-01 00:00:00, dtype: float64"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.loc[dates[0]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B\n",
+ "2013-01-01 0.403447 0.867925\n",
+ "2013-01-02 0.647245 0.527794\n",
+ "2013-01-03 0.968790 0.457411\n",
+ "2013-01-04 0.465454 0.933833\n",
+ "2013-01-05 0.732277 0.793085\n",
+ "2013-01-06 0.765932 0.282835"
+ ]
+ },
+ "execution_count": 45,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.loc[:, [\"A\",\"B\"]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.7659321668758745"
+ ]
+ },
+ "execution_count": 49,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.at[dates[5],\"A\"]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "A 0.765932\n",
+ "B 0.282835\n",
+ "C 0.725100\n",
+ "D 0.481234\n",
+ "Name: 2013-01-06 00:00:00, dtype: float64"
+ ]
+ },
+ "execution_count": 52,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.iloc[5]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.381144 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " D\n",
+ "2013-01-02 0.732754\n",
+ "2013-01-03 0.381144"
+ ]
+ },
+ "execution_count": 54,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.iloc[1:3,3:5]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " C | \n",
+ " D | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ " 0.379987 | \n",
+ " 0.244467 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ " 0.737714 | \n",
+ " 0.732754 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ " 0.061389 | \n",
+ " 0.381144 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ " 0.460837 | \n",
+ " 0.443352 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ " 0.042785 | \n",
+ " 0.498538 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ " 0.725100 | \n",
+ " 0.481234 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B C D\n",
+ "2013-01-01 0.403447 0.867925 0.379987 0.244467\n",
+ "2013-01-02 0.647245 0.527794 0.737714 0.732754\n",
+ "2013-01-03 0.968790 0.457411 0.061389 0.381144\n",
+ "2013-01-04 0.465454 0.933833 0.460837 0.443352\n",
+ "2013-01-05 0.732277 0.793085 0.042785 0.498538\n",
+ "2013-01-06 0.765932 0.282835 0.725100 0.481234"
+ ]
+ },
+ "execution_count": 69,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df[\"A\"]>0.1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B\n",
+ "2013-01-01 0.403447 0.867925\n",
+ "2013-01-02 0.647245 0.527794\n",
+ "2013-01-03 0.968790 0.457411\n",
+ "2013-01-04 0.465454 0.933833\n",
+ "2013-01-05 0.732277 0.793085\n",
+ "2013-01-06 0.765932 0.282835"
+ ]
+ },
+ "execution_count": 74,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = df.get(['A','B'])\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df2 =df.copy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B\n",
+ "2013-01-01 0.403447 0.867925\n",
+ "2013-01-02 0.647245 0.527794\n",
+ "2013-01-03 0.968790 0.457411\n",
+ "2013-01-04 0.465454 0.933833\n",
+ "2013-01-05 0.732277 0.793085\n",
+ "2013-01-06 0.765932 0.282835"
+ ]
+ },
+ "execution_count": 81,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 88,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " A | \n",
+ " B | \n",
+ " avg | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013-01-01 | \n",
+ " 0.403447 | \n",
+ " 0.867925 | \n",
+ " 0.635686 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-02 | \n",
+ " 0.647245 | \n",
+ " 0.527794 | \n",
+ " 0.587519 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-03 | \n",
+ " 0.968790 | \n",
+ " 0.457411 | \n",
+ " 0.713100 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-04 | \n",
+ " 0.465454 | \n",
+ " 0.933833 | \n",
+ " 0.699644 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-05 | \n",
+ " 0.732277 | \n",
+ " 0.793085 | \n",
+ " 0.762681 | \n",
+ "
\n",
+ " \n",
+ " 2013-01-06 | \n",
+ " 0.765932 | \n",
+ " 0.282835 | \n",
+ " 0.524384 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " A B avg\n",
+ "2013-01-01 0.403447 0.867925 0.635686\n",
+ "2013-01-02 0.647245 0.527794 0.587519\n",
+ "2013-01-03 0.968790 0.457411 0.713100\n",
+ "2013-01-04 0.465454 0.933833 0.699644\n",
+ "2013-01-05 0.732277 0.793085 0.762681\n",
+ "2013-01-06 0.765932 0.282835 0.524384"
+ ]
+ },
+ "execution_count": 88,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['avg'] = df[['A', 'B']].mean(axis=1)\n",
+ "df\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Pandas Case Study\n",
+ "We will check data from kashti dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# import libraries\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " survived | \n",
+ " pclass | \n",
+ " sex | \n",
+ " age | \n",
+ " sibsp | \n",
+ " parch | \n",
+ " fare | \n",
+ " embarked | \n",
+ " class | \n",
+ " who | \n",
+ " adult_male | \n",
+ " deck | \n",
+ " embark_town | \n",
+ " alive | \n",
+ " alone | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 7.2500 | \n",
+ " S | \n",
+ " Third | \n",
+ " man | \n",
+ " True | \n",
+ " NaN | \n",
+ " Southampton | \n",
+ " no | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 71.2833 | \n",
+ " C | \n",
+ " First | \n",
+ " woman | \n",
+ " False | \n",
+ " C | \n",
+ " Cherbourg | \n",
+ " yes | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 7.9250 | \n",
+ " S | \n",
+ " Third | \n",
+ " woman | \n",
+ " False | \n",
+ " NaN | \n",
+ " Southampton | \n",
+ " yes | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 53.1000 | \n",
+ " S | \n",
+ " First | \n",
+ " woman | \n",
+ " False | \n",
+ " C | \n",
+ " Southampton | \n",
+ " yes | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8.0500 | \n",
+ " S | \n",
+ " Third | \n",
+ " man | \n",
+ " True | \n",
+ " NaN | \n",
+ " Southampton | \n",
+ " no | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 886 | \n",
+ " 0 | \n",
+ " 2 | \n",
+ " male | \n",
+ " 27.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 13.0000 | \n",
+ " S | \n",
+ " Second | \n",
+ " man | \n",
+ " True | \n",
+ " NaN | \n",
+ " Southampton | \n",
+ " no | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 887 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 19.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 30.0000 | \n",
+ " S | \n",
+ " First | \n",
+ " woman | \n",
+ " False | \n",
+ " B | \n",
+ " Southampton | \n",
+ " yes | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 888 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " female | \n",
+ " NaN | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 23.4500 | \n",
+ " S | \n",
+ " Third | \n",
+ " woman | \n",
+ " False | \n",
+ " NaN | \n",
+ " Southampton | \n",
+ " no | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 889 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " male | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 30.0000 | \n",
+ " C | \n",
+ " First | \n",
+ " man | \n",
+ " True | \n",
+ " C | \n",
+ " Cherbourg | \n",
+ " yes | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 890 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 32.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 7.7500 | \n",
+ " Q | \n",
+ " Third | \n",
+ " man | \n",
+ " True | \n",
+ " NaN | \n",
+ " Queenstown | \n",
+ " no | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
891 rows × 15 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " survived pclass sex age sibsp parch fare embarked class \\\n",
+ "0 0 3 male 22.0 1 0 7.2500 S Third \n",
+ "1 1 1 female 38.0 1 0 71.2833 C First \n",
+ "2 1 3 female 26.0 0 0 7.9250 S Third \n",
+ "3 1 1 female 35.0 1 0 53.1000 S First \n",
+ "4 0 3 male 35.0 0 0 8.0500 S Third \n",
+ ".. ... ... ... ... ... ... ... ... ... \n",
+ "886 0 2 male 27.0 0 0 13.0000 S Second \n",
+ "887 1 1 female 19.0 0 0 30.0000 S First \n",
+ "888 0 3 female NaN 1 2 23.4500 S Third \n",
+ "889 1 1 male 26.0 0 0 30.0000 C First \n",
+ "890 0 3 male 32.0 0 0 7.7500 Q Third \n",
+ "\n",
+ " who adult_male deck embark_town alive alone \n",
+ "0 man True NaN Southampton no False \n",
+ "1 woman False C Cherbourg yes False \n",
+ "2 woman False NaN Southampton yes True \n",
+ "3 woman False C Southampton yes False \n",
+ "4 man True NaN Southampton no True \n",
+ ".. ... ... ... ... ... ... \n",
+ "886 man True NaN Southampton no True \n",
+ "887 woman False B Southampton yes True \n",
+ "888 woman False NaN Southampton no False \n",
+ "889 man True C Cherbourg yes True \n",
+ "890 man True NaN Queenstown no True \n",
+ "\n",
+ "[891 rows x 15 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "kashti = sns.load_dataset(\"titanic\")\n",
+ "kashti"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\ANONYM~1\\AppData\\Local\\Temp/ipykernel_15132/2159104507.py:4: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
+ " kashti.median()\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "survived 0.0000\n",
+ "pclass 3.0000\n",
+ "age 28.0000\n",
+ "sibsp 0.0000\n",
+ "parch 0.0000\n",
+ "fare 14.4542\n",
+ "adult_male 1.0000\n",
+ "alone 1.0000\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Saving dataframe into csv file\n",
+ "kashti.to_csv('kashti.csv')\n",
+ "#kashti.mean()\n",
+ "kashti.median()\n",
+ "#kashti.mode()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 96,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " survived | \n",
+ " pclass | \n",
+ " age | \n",
+ " sibsp | \n",
+ " parch | \n",
+ " fare | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ " 714.000000 | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ " 891.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 0.383838 | \n",
+ " 2.308642 | \n",
+ " 29.699118 | \n",
+ " 0.523008 | \n",
+ " 0.381594 | \n",
+ " 32.204208 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 0.486592 | \n",
+ " 0.836071 | \n",
+ " 14.526497 | \n",
+ " 1.102743 | \n",
+ " 0.806057 | \n",
+ " 49.693429 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 0.000000 | \n",
+ " 1.000000 | \n",
+ " 0.420000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 0.000000 | \n",
+ " 2.000000 | \n",
+ " 20.125000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 7.910400 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 0.000000 | \n",
+ " 3.000000 | \n",
+ " 28.000000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 14.454200 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 1.000000 | \n",
+ " 3.000000 | \n",
+ " 38.000000 | \n",
+ " 1.000000 | \n",
+ " 0.000000 | \n",
+ " 31.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 1.000000 | \n",
+ " 3.000000 | \n",
+ " 80.000000 | \n",
+ " 8.000000 | \n",
+ " 6.000000 | \n",
+ " 512.329200 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " survived pclass age sibsp parch fare\n",
+ "count 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000\n",
+ "mean 0.383838 2.308642 29.699118 0.523008 0.381594 32.204208\n",
+ "std 0.486592 0.836071 14.526497 1.102743 0.806057 49.693429\n",
+ "min 0.000000 1.000000 0.420000 0.000000 0.000000 0.000000\n",
+ "25% 0.000000 2.000000 20.125000 0.000000 0.000000 7.910400\n",
+ "50% 0.000000 3.000000 28.000000 0.000000 0.000000 14.454200\n",
+ "75% 1.000000 3.000000 38.000000 1.000000 0.000000 31.000000\n",
+ "max 1.000000 3.000000 80.000000 8.000000 6.000000 512.329200"
+ ]
+ },
+ "execution_count": 96,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# basic statistics or summary\n",
+ "kashti.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 98,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " survived | \n",
+ " pclass | \n",
+ " sex | \n",
+ " age | \n",
+ " sibsp | \n",
+ " parch | \n",
+ " fare | \n",
+ " embarked | \n",
+ " class | \n",
+ " who | \n",
+ " adult_male | \n",
+ " deck | \n",
+ " embark_town | \n",
+ " alive | \n",
+ " alone | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 7.2500 | \n",
+ " S | \n",
+ " Third | \n",
+ " man | \n",
+ " True | \n",
+ " NaN | \n",
+ " Southampton | \n",
+ " no | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 71.2833 | \n",
+ " C | \n",
+ " First | \n",
+ " woman | \n",
+ " False | \n",
+ " C | \n",
+ " Cherbourg | \n",
+ " yes | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 7.9250 | \n",
+ " S | \n",
+ " Third | \n",
+ " woman | \n",
+ " False | \n",
+ " NaN | \n",
+ " Southampton | \n",
+ " yes | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 53.1000 | \n",
+ " S | \n",
+ " First | \n",
+ " woman | \n",
+ " False | \n",
+ " C | \n",
+ " Southampton | \n",
+ " yes | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8.0500 | \n",
+ " S | \n",
+ " Third | \n",
+ " man | \n",
+ " True | \n",
+ " NaN | \n",
+ " Southampton | \n",
+ " no | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " survived pclass sex age sibsp parch fare embarked class \\\n",
+ "0 0 3 male 22.0 1 0 7.2500 S Third \n",
+ "1 1 1 female 38.0 1 0 71.2833 C First \n",
+ "2 1 3 female 26.0 0 0 7.9250 S Third \n",
+ "3 1 1 female 35.0 1 0 53.1000 S First \n",
+ "4 0 3 male 35.0 0 0 8.0500 S Third \n",
+ "\n",
+ " who adult_male deck embark_town alive alone \n",
+ "0 man True NaN Southampton no False \n",
+ "1 woman False C Cherbourg yes False \n",
+ "2 woman False NaN Southampton yes True \n",
+ "3 woman False C Southampton yes False \n",
+ "4 man True NaN Southampton no True "
+ ]
+ },
+ "execution_count": 98,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "kashti.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 102,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " survived | \n",
+ " pclass | \n",
+ " sex | \n",
+ " age | \n",
+ " sibsp | \n",
+ " parch | \n",
+ " fare | \n",
+ " embarked | \n",
+ " class | \n",
+ " who | \n",
+ " adult_male | \n",
+ " embark_town | \n",
+ " alone | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 7.2500 | \n",
+ " S | \n",
+ " Third | \n",
+ " man | \n",
+ " True | \n",
+ " Southampton | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 71.2833 | \n",
+ " C | \n",
+ " First | \n",
+ " woman | \n",
+ " False | \n",
+ " Cherbourg | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 7.9250 | \n",
+ " S | \n",
+ " Third | \n",
+ " woman | \n",
+ " False | \n",
+ " Southampton | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 53.1000 | \n",
+ " S | \n",
+ " First | \n",
+ " woman | \n",
+ " False | \n",
+ " Southampton | \n",
+ " False | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 8.0500 | \n",
+ " S | \n",
+ " Third | \n",
+ " man | \n",
+ " True | \n",
+ " Southampton | \n",
+ " True | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " survived pclass sex age sibsp parch fare embarked class \\\n",
+ "0 0 3 male 22.0 1 0 7.2500 S Third \n",
+ "1 1 1 female 38.0 1 0 71.2833 C First \n",
+ "2 1 3 female 26.0 0 0 7.9250 S Third \n",
+ "3 1 1 female 35.0 1 0 53.1000 S First \n",
+ "4 0 3 male 35.0 0 0 8.0500 S Third \n",
+ "\n",
+ " who adult_male embark_town alone \n",
+ "0 man True Southampton False \n",
+ "1 woman False Cherbourg False \n",
+ "2 woman False Southampton True \n",
+ "3 woman False Southampton False \n",
+ "4 man True Southampton True "
+ ]
+ },
+ "execution_count": 102,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "new_kashti = kashti.drop(['deck','alive'],axis=1)\n",
+ "new_kashti.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 104,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\ANONYM~1\\AppData\\Local\\Temp/ipykernel_6824/3332994036.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
+ " kashti.mean()\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "survived 0.383838\n",
+ "pclass 2.308642\n",
+ "age 29.699118\n",
+ "sibsp 0.523008\n",
+ "parch 0.381594\n",
+ "fare 32.204208\n",
+ "adult_male 0.602694\n",
+ "alone 0.602694\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 104,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "kashti.mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 106,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " survived | \n",
+ " pclass | \n",
+ " age | \n",
+ " sibsp | \n",
+ " parch | \n",
+ " fare | \n",
+ " adult_male | \n",
+ " alone | \n",
+ "
\n",
+ " \n",
+ " sex | \n",
+ " class | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " female | \n",
+ " First | \n",
+ " 0.968085 | \n",
+ " 1.0 | \n",
+ " 34.611765 | \n",
+ " 0.553191 | \n",
+ " 0.457447 | \n",
+ " 106.125798 | \n",
+ " 0.000000 | \n",
+ " 0.361702 | \n",
+ "
\n",
+ " \n",
+ " Second | \n",
+ " 0.921053 | \n",
+ " 2.0 | \n",
+ " 28.722973 | \n",
+ " 0.486842 | \n",
+ " 0.605263 | \n",
+ " 21.970121 | \n",
+ " 0.000000 | \n",
+ " 0.421053 | \n",
+ "
\n",
+ " \n",
+ " Third | \n",
+ " 0.500000 | \n",
+ " 3.0 | \n",
+ " 21.750000 | \n",
+ " 0.895833 | \n",
+ " 0.798611 | \n",
+ " 16.118810 | \n",
+ " 0.000000 | \n",
+ " 0.416667 | \n",
+ "
\n",
+ " \n",
+ " male | \n",
+ " First | \n",
+ " 0.368852 | \n",
+ " 1.0 | \n",
+ " 41.281386 | \n",
+ " 0.311475 | \n",
+ " 0.278689 | \n",
+ " 67.226127 | \n",
+ " 0.975410 | \n",
+ " 0.614754 | \n",
+ "
\n",
+ " \n",
+ " Second | \n",
+ " 0.157407 | \n",
+ " 2.0 | \n",
+ " 30.740707 | \n",
+ " 0.342593 | \n",
+ " 0.222222 | \n",
+ " 19.741782 | \n",
+ " 0.916667 | \n",
+ " 0.666667 | \n",
+ "
\n",
+ " \n",
+ " Third | \n",
+ " 0.135447 | \n",
+ " 3.0 | \n",
+ " 26.507589 | \n",
+ " 0.498559 | \n",
+ " 0.224784 | \n",
+ " 12.661633 | \n",
+ " 0.919308 | \n",
+ " 0.760807 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " survived pclass age sibsp parch fare \\\n",
+ "sex class \n",
+ "female First 0.968085 1.0 34.611765 0.553191 0.457447 106.125798 \n",
+ " Second 0.921053 2.0 28.722973 0.486842 0.605263 21.970121 \n",
+ " Third 0.500000 3.0 21.750000 0.895833 0.798611 16.118810 \n",
+ "male First 0.368852 1.0 41.281386 0.311475 0.278689 67.226127 \n",
+ " Second 0.157407 2.0 30.740707 0.342593 0.222222 19.741782 \n",
+ " Third 0.135447 3.0 26.507589 0.498559 0.224784 12.661633 \n",
+ "\n",
+ " adult_male alone \n",
+ "sex class \n",
+ "female First 0.000000 0.361702 \n",
+ " Second 0.000000 0.421053 \n",
+ " Third 0.000000 0.416667 \n",
+ "male First 0.975410 0.614754 \n",
+ " Second 0.916667 0.666667 \n",
+ " Third 0.919308 0.760807 "
+ ]
+ },
+ "execution_count": 106,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "kashti.groupby(['sex','class']).mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 108,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "survived\n",
+ "0 549\n",
+ "1 342\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 108,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "kashti.value_counts(['survived'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 112,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " | \n",
+ " survived | \n",
+ " pclass | \n",
+ " age | \n",
+ " sibsp | \n",
+ " parch | \n",
+ " fare | \n",
+ " adult_male | \n",
+ " alone | \n",
+ "
\n",
+ " \n",
+ " sex | \n",
+ " class | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " female | \n",
+ " First | \n",
+ " 0.875000 | \n",
+ " 1.0 | \n",
+ " 14.125000 | \n",
+ " 0.500000 | \n",
+ " 0.875000 | \n",
+ " 104.083337 | \n",
+ " 0.000000 | \n",
+ " 0.125000 | \n",
+ "
\n",
+ " \n",
+ " Second | \n",
+ " 1.000000 | \n",
+ " 2.0 | \n",
+ " 8.333333 | \n",
+ " 0.583333 | \n",
+ " 1.083333 | \n",
+ " 26.241667 | \n",
+ " 0.000000 | \n",
+ " 0.166667 | \n",
+ "
\n",
+ " \n",
+ " Third | \n",
+ " 0.542857 | \n",
+ " 3.0 | \n",
+ " 8.428571 | \n",
+ " 1.571429 | \n",
+ " 1.057143 | \n",
+ " 18.727977 | \n",
+ " 0.000000 | \n",
+ " 0.228571 | \n",
+ "
\n",
+ " \n",
+ " male | \n",
+ " First | \n",
+ " 1.000000 | \n",
+ " 1.0 | \n",
+ " 8.230000 | \n",
+ " 0.500000 | \n",
+ " 2.000000 | \n",
+ " 116.072900 | \n",
+ " 0.250000 | \n",
+ " 0.000000 | \n",
+ "
\n",
+ " \n",
+ " Second | \n",
+ " 0.818182 | \n",
+ " 2.0 | \n",
+ " 4.757273 | \n",
+ " 0.727273 | \n",
+ " 1.000000 | \n",
+ " 25.659473 | \n",
+ " 0.181818 | \n",
+ " 0.181818 | \n",
+ "
\n",
+ " \n",
+ " Third | \n",
+ " 0.232558 | \n",
+ " 3.0 | \n",
+ " 9.963256 | \n",
+ " 2.069767 | \n",
+ " 1.000000 | \n",
+ " 22.752523 | \n",
+ " 0.348837 | \n",
+ " 0.232558 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " survived pclass age sibsp parch fare \\\n",
+ "sex class \n",
+ "female First 0.875000 1.0 14.125000 0.500000 0.875000 104.083337 \n",
+ " Second 1.000000 2.0 8.333333 0.583333 1.083333 26.241667 \n",
+ " Third 0.542857 3.0 8.428571 1.571429 1.057143 18.727977 \n",
+ "male First 1.000000 1.0 8.230000 0.500000 2.000000 116.072900 \n",
+ " Second 0.818182 2.0 4.757273 0.727273 1.000000 25.659473 \n",
+ " Third 0.232558 3.0 9.963256 2.069767 1.000000 22.752523 \n",
+ "\n",
+ " adult_male alone \n",
+ "sex class \n",
+ "female First 0.000000 0.125000 \n",
+ " Second 0.000000 0.166667 \n",
+ " Third 0.000000 0.228571 \n",
+ "male First 0.250000 0.000000 \n",
+ " Second 0.181818 0.181818 \n",
+ " Third 0.348837 0.232558 "
+ ]
+ },
+ "execution_count": 112,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Cuz children and women are first\n",
+ "#Children\n",
+ "kashti[kashti['age']<18].groupby(['sex','class']).mean()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Graphs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "The syntax of the command is incorrect.\n"
+ ]
+ }
+ ],
+ "source": [
+ "pip install plotly|"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVYAAAFgCAYAAADgjFEzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA66UlEQVR4nO3deZxkWVnn/8839si99q2ruqpXaFu6ocsGFRT0Rw/gAowwNKIoMCKKDKioIM4I8sMF3AdUWkRcEBSBERFoHBUBQejqfaObrq7u2rvWXCMztvvMH/dG5I3IPTMiMjLzeb9e8cq4524nIzOfPPfcc58jM8M551zrJFa7As45t954YHXOuRbzwOqccy3mgdU551rMA6tzzrWYB1bnnGsxD6xdQtJ49HW/pB9u43meL+mQpAck3Snpd5a4/3gb6/YkSV+VVJT05lj51ZLuir1GJb0pWvdSSfdLCiQdjO3ziqZ9AknXt6vuzsV5YO0++4G2BFZJ1wLvBX7EzK4BDgKPtONcy3QB+B/Ab8cLzewhM7vezK4HbgAKwCej1fcB/xX4YtM+H47t86PAETO7q621dy7igbX7/CbwrKiV9bOSkpLeI+k2SfdI+kkASc+W9O+S/kHSo5J+M2qlfV3SvZIun+XYvwi8y8y+AWBmVTP74+h4+yX9a3SOf5G0Lyo/ELUi75X0/8cPJukXYvV6x0q/cTM7Y2a3AeV5Nvte4LCZPR7t86CZPbTAoV8OfHSl9XNusbousEr6oKQzku5bxLa/F7vUe1jScAeq2G5vAb4UtbZ+D3gNMGJm3wZ8G/ATkg5E214HvA54MmGr7CozuxH4APCGWY59LXD7HOf938BfmNlTgA8DfxiV/wHwx2b2rcCp2saSbgKuBG4ErgdukPRdzQeV9LdNl+S11ysX+4E0uRn4yBL3edky9nFu2VKrXYFZfIjwcvUvF9rQzH629l7SG4Cntq9aq+Ym4CmSXhItDxIGtBJwm5mdApB0GPh8tM29wHOWeJ5vJ7ykBvgr4N3R++8EfihW/luxet0E3Bkt90X1ar4kf9kS6zEnSRngB4G3LmGfpwMFM1vwH7VzrdJ1gdXMvihpf7wsuqx9H7CNsH/tJ2qXszEvB361I5XsLAFvMLNbGwqlZwPFWFEQWw6Y/Wd7P2Ef5d1LrMNsCSUE/IaZvX++HSX9LXD1LKt+18wW/OfZ5PnAHWb2xBL2WU4L17kV6bqugDncQhhcbgDeDPxRfKWkS4EDwL+uQt1abQzojy3fCvyUpDSApKsk9S7z2O8BflnSVdGxEpJeF637CmEQAngF8KXo/X80lcfr9WpJfdGx9kja3nxCM3tZ7SZS02upQRXCf56LDpKSEsB/w/tXXYd1XYu1WfSH+x3AxyTVirNNm90M/L2ZVTtZtza5B6hKupuwW+QPCEcK3KHwAzgLvGg5Bzaze6JhSh+R1EPYEv10tPoNwJ9L+oXoHK+Kyt8I/I2kXwL+IXasz0t6MvDV6OcyDvwIcGY5dQOQtBM4BAwAQVTXa8xsNPpn8lzgJ5v2eTFh//A24J8k3WVm/yVa/V3AMTN7dLl1cm451I1pA6OugE+b2bWSBoCHzGzXPNvfCbzezL7SqTo659xcur4rwMxGgSOSXgqg0HW19ZKeBGwCvrpKVXTOuQZdF1glfYQwSF4t6bik1xD27b0mujy+H3hhbJebgY9aNza9nXMbUld2BTjn3FrWdS1W55xb67oqsD7vec8zwjvV/vKXv1r/ch3SVYH13Llzq10F55xbsa4KrM45tx54YHXOuRbzwOqccy3mgdU551rMA6tzzrWYB1bnnGsxD6zOOddiHlidc67FPLA651yLeWB1zrkW6/oZBJzbaIJKhcKpYySSKfK7LiE2c4ZbIzywOtdlJp84QenieQBSPb1khjavco3cUnlXgHNdxMwojVysL1emJlexNm65PLA610UqhXGsUqkvB+XSKtbGLZcHVue6SHlkuGE5KHlgXYs8sDrXJcyM0ujFhjJvsa5NHlid6xLVqckZLdSgXMLnpVt7PLA61yXiN63qzLBKufOVcSvigdW5LlEeHZ613PtZ1x4PrM51gWpximptaJVEqq9/ep33s645Hlid6wKlWGs13TdAMpuvL8/VYq2WipRGLhLEhme57uBPXjnXBcqx/tXM4CaC6sJjWUsjF5k8dRyA3Lad9Oy6pL2VdIvmLVbnVlm1OEWlMFFfTg8Mkkxn6stBqTjrfpWJ8fr7RCbbvgq6JfPA6twqK0Z5AQDS/YMkUmkSmVhgnaXFamYNgTXd29feSrol8cDqXAdVS8WGQGlm9YQrANnNWwFIpKdboLMF1qA4hUXdBUqmSGRz7aqyWwbvY3WuQ0ojw4w//ggkEvQfuJJ0bz+VibF64FQySbp/MHyfSoEUjmOtVrFqFSWT9WOVY63VVG+fpxbsMt5ida5Dps6dDt8EARNHj2DVakM3QGZoC0qEf5KSSMT6WZuHXFUmxurvU94N0HU8sDrXAUGl3NAnGpRLTJx4nNLw9GiA7KYtDfs09LM23cDy/tXu5oHVuQ4oj47MKCsNXwALAEjm8iTzPQ3r5+pnrZZK08tKzNjPrT4PrM51QPwBACWSM9ZnNm2Z0U+abGixTgfWxm6AXiT/M+42/hNxrs0sCCiPjdaX+w5cgZKN942zQ1uad2voY423WCuF2I2rHu8G6EYeWJ1rs/L4aP2SP5HNke7tp/eSS+vr04ObSKTTM/ZLzNlijfev9uO6jw+3cq7N4rMCZAaGwq+Dm+i79HKqU5Nkt26fdb/GFmt48yqoVKaTtRBONui6jwdW59rIzCiNDdeX01FghTC4Mrhpzn0bA2sZs6ChGyCZ72kY2+q6R9u7AiQlJd0p6dPtPpdz3aZSmKhPDqhUakktTCUSKDXdRRCUG4dspbwboGt1oo/1jcCDHTiPc12nHJvDKjMwtOQnpJrHssZvgvn41e7V1sAq6RLg+4APtPM8znWrUmz8arwbYLHiWa4mjj1GdapQX/YnrrpXu1usvw/8IhC0+TzOdR0LAoLiVH053bf0S/e5hlzltu0kkZo5ksB1h7YFVknfD5wxs9sX2O61kg5JOnT27Nl2Vce5jqvGgmoik531wYCFzJZnNbt1O/mde1ZUN9de7Wyxfifwg5IeAz4KfI+kv27eyMxuMbODZnZw27ZtbayOc50Vb60ms8tLRB3vYwXIbt1Bz669ns2qy7UtsJrZW83sEjPbD9wM/KuZ/Ui7zufcarFqlcKp40yeOYWZ1csbWqzLzJea7huot1pr0694UO1+Po7VuRWaOn+GqbNhSsBkJktmaDMA1eJ0RqrkMgOrEgkGr74Wq1a8T3UN6cgjrWb2BTP7/k6cy7lOi89XVY4lSKk2dAUsP8O/JA+qa4znCnBuhRoSpEyGw6HMrKmP1adO2Ug8sDq3QvEk1NXJScwMq1SwoBoWNj1B5dY/72N1bgVq81FNFwRUi1P1x1ghbK36DaeNxQOrcyvQPBcVQLUw0TA6wLsBNh4PrM4tUvHCOSqFcXLbd5GMhkA1z0UFYT9rvIXqgXXj8cDq3CJUJgtMHH8MCHOi9u+/InxfmqXFOlloSOe33DGsbu3ywOrcIsTnmYoPr6oloG7YdqrQMDzKW6wbj48KcG4R4sHUKmWCanhzarYWK0HQ0EXggXXj8cDq3CLEAytAdSoco1qNBdbZsvkn0hmU8D+zjcZ/4s4tIKhUZtykqs07Fe8KmC3fqvevbkweWJ1bQHVyYmZZcRILgth4VdUnCozzboCNyQOrcwto7gaAsCsg3opNpNMk8zPns/LAujF5YHVuAbXn/+OqxcmGhwMSmSyJdBolGwfaeGDdmDywOjcPM2uYcrpeXi5TjQXcRCaDJJL5nobtPLBuTB5YnZtHUC5P96MmEg2BMj5jam1uqlQ8sCYSKO3JVzYiD6zOzSN+4yrV00syNx04KxPTLdnaI67xwJrMePKVjcoDq3PziHcDpPK9JHPxS/vpRCu1uanS/YP11mt289aO1NF1H3+k1bl5xEcEpHpm3vWvSaTDFquSSQavvpagUq63Yt3G44HVuZjK1CTF82dJ9fSSGdzUMCIg1dPbmHs1JhHrS1Ui4UF1g/PA6lzMxNFHqU5NUjwPk6ePQxAAoFSaRDqDpQKQIJZvNZFO+2OrroH/NjgXCSqV+qOqEI4IqKl1A0iJGUOoat0AztV4YHUuUp3lQYCaeP/qjMAa3bhyrsYDq3ORSmxoVWZwE7ntu1AySSKTJbtp+g5/Mpdv2C/h/amuifexOheJt1hTfQPktmwjv2M3wLxTrdSGVzlX44HVuUjDCIBooP9sA/ybW6xJ7wpwTbwrwDkgqMZzrmpG8IxLZLPAdMD1rgDXzAOrczR2AyRzuXmHT0kJ0oNDQJjI2gOra+ZdAc7R3A0w9xNWNX1791PetJVUT6/nA3AzeGB1DqgWYi3Wnp55tgwpkSQzMNjOKrk1zLsCnKNxqFUqv3BgdW4+HljdhmfVatONKw+sbmU8sLoNr7KEG1fOLYb3sboNJ6hUKJw6jhIJ8jt2N3QDzDYhoHNL5YHVbThT556gdPEcAOXxURKp6ZR/3r/qWsEDq9twqrHk1UFxiqA4VV/2wOpawTuT3IZTiaUGbNY8y6pzy+GB1W0oQaWCVaI8qxJKJuvrkrm837hyLeG/RW5DqRanW6vJbJ6BK54c5gWQyG3buYo1c+uJ97G6DaU6GQusuTzJbI6BK68BC1AiOc+ezi2eB1a3oTS0WKMMVpJAHlRd63hXgNtQ4nNazZca0LmV8MDqNgwz88DqOsIDq9swrFLGqlUgzE6VSKcX2MO55fHA6jaMSlNr1fOounbxwOo2DO8GcJ3igdVtGB5YXad4YHUbRmNgzc2zpXMr44HVbQjhiIDpZCveYnXt5IHVbQhBqQgWAKBUuiFVoHOt5oHVbQjeDeA6yQOrW3OqxSlKIxexIFj8Pn7jynWQ5wpwa0pQqTD6yINYtUp2y3Z69+xb1H7xwJryyQJdm7WtxSopJ+nrku6WdL+kd7TrXG7jqIyP1p+eKo8OL2ofM5sxYaBz7dTOFmsR+B4zG5eUBr4s6bNm9p9tPKdb5+IT/wXlEhZUF0z3VymMT09vrYR3Bbi2a1uL1ULj0WI6elm7zuc2hkqh0LAcH0I1l+L5s/X32U2bPe+qa7u23rySlJR0F3AG+Gcz+9os27xW0iFJh86ePTvjGM7VmBnVyabAWpw/sAaVMqWRi/Xl7OZtbambc3FtDaxmVjWz64FLgBslXTvLNreY2UEzO7htm//Su7kFxSIWVBvK4omrZ1O8cA4svFBK5ntJ9fS2rX7O1XRkuJWZDQP/BjyvE+dz61O8f7Vmvq4AM6N4YfoqKLfF/3G7zmjnqIBtkoai93ngucA32nU+t/7NGljn6Qooj40SlEoAKJkkM7S5bXVzLq6dowJ2AX8hKUkYwP/OzD7dxvO5da7adOMKIChOYUEw67TVxfNn6u8zm7b61NauY9oWWM3sHuCp7Tq+21iax6Iqkaz3t1ZLRVJNQ6iCcony2Eh92bsBXCf5v3C3JlSLU/UkKol0mlTv9E2oYGrmDazSyHD9faq3n2TWHwpwneOB1a0J1cJ0/2oy30syO91Cna2ftTQ6PcQqM7ipvZVzronnCnBrQvzGVSrf0zARYPPIgKBaoTI+Xl/ODAy1vX7OxXlgdWtC/ImrVE8vxJ6eah7LWh4dofaQXzLfQyKT6UgdnavxwOq6UlApU7p4gWQuR6q3n+pULIlKvhdiE6xWi1OYWX3W1XhyFm+tutXggdV1pfGjj1IZHwPCjP+1p6cSmQyJVKpebpUymBGUiiSzOSwIKI+N1o+T9sDqVoHfvHJdx4KgoY/UKuX6+1R+ejRAPP1f7QZWZWKsPgwrkcl4Jiu3Kjywuq4TXvbPnggt/qx/w8iAaMhVKdYNkB4YqncPONdJHlhd14nfqEoPDNF7yX5Sff2kB4YaslPFx6bW+llL3r/acpJeJMkkPamN5+iT9H5JhyXdLukLkp6+hP3fLunN7arfUnkfq+s68aFV6d4+spu3kt28dcZ2DV0BkwWK589i5bDbQMkkqd7+9ld2Y3g58OXo6682r5SUMrPKCs/xAeAIcKWZBZIOANes8JirxlusruvEc64m50nz19wVUDh5tL6c7vdugFaQ1Ac8E3gNcHOs/NmSviTpU8ADUe7l90i6TdI9kn6ytr+kf5F0h6R7Jb1wlnNcDjwd+BWz8PE6MztiZv8Urf85SfdFrzfF9nubpIclfRm4On48SZ+LWr5famdLey7eYnVdxYLqoif+UyqFkimsOrOxlN28pS3124BeCHzOzB6WdF7SDWZ2e7TuacC1ZnZE0muBETP7NklZ4D8kfR44BrzYzEYlbQX+U9KnzCzeif4twF1m1phsF5B0A/AqwsAr4GuS/p2wUXgzcD1hHLsDqNXrFuB1ZvbNqDvhj4DvaeFnsiAPrK6rNEz6l82h5NzTqEgit3U7k0+chESCVE8vqZ4+MgODpHr6OlHdjeDlwB9E7z8aLdcC2NfN7Ej0/ibgKZJeEi0PAlcCx4Ffl/RdQADsAXYApxd5/mcCnzSzCQBJnwCeRRhYP2lmhaj8U9HXPuA7gI/FrliyS/mGW8EDq+sqi+0GqMnv2E12y3aUTPqlf4tJ2kzY0vtWSQYkAZP0C9Em8QS5At5gZrc2HePHgW3ADWZWlvQY0JwR537gOknJ2VqtS5QAhqOZS1aN97G6rlIpNOYEWIxEKuVBtT1eAvyVmV1qZvvNbC/hDaZnzbLtrcBPRTMyI+kqSb2ELdczUVB9DnBp845mdhg4BLxD0Q9S0n5J3wd8CXiRpJ7oeC+Oyr4Ylecl9QM/EB1rFDgi6aXRcSTputZ9JIvjgdV1lYaugLzPT7XKXg58sqns41F5sw8ADwB3SLoPeD/hFfGHgYOS7gVeydyziPx3wi6CR6L9P0QYkO+I3n8d+BrwATO7Myr/W+Bu4LPAbbFjvQJ4jaS7CVvDM26YtZsa+5BX18GDB+3QoUOrXQ23Sqxa5eL9d9aXN137VJ+qurW8Wd8h3mJ1XaOhtZrLe1B1a5YHVtc14g8GJBfZv+pcN/LA6rpGfLLAlPevujXMh1u5VVMeG6Vw+jiYkertozwxVl+X6vEWq1u7PLC6jguqFSZPHqd48Vy9rNowIaBIzvPElXPdzgOr66jy+BjjRx9tyLHaLJnPo4T3Urm1y397XUcVTjzeEFTTg5vo238lue27SPX2kczl6dl5ySrW0LWbpA9KOhONV42Xv0HSNyTdL+ndUdl+SZOS7opef7I6tV4ab7G6jgmqldhU1aLv0svqU1NnBgZXr2Ku0z4EvBf4y1pB9FTWC4HrzKwoaXts+8Or/YjqUnmL1XVM/K5/MpevB1W3sZjZF4ELTcU/BfymmRWjbc50vGIt5C1W1zHxcap+1391Xbjn0O8Tptxrpbs2P+Xgm5a571XAsyS9C5gC3mxmtcdUD0i6ExglzNn6pZVXtb08sLqO8TwAbh4pYDPwDODbgL+TdBlwCthnZuej3Kz/R9K3RMlWupYHVtcx1XjmqkWkBHTts4KWZbscBz4RJcD+uqQA2GpmZ4Fa98Dtkg4Ttm67OqmI97G6lrOgysSJxymcPIYFAQBBpUxQLoUbSA3zVTkH/B/gORCmHAQywDlJ2yQlo/LLCJNnP7palVysRbdYJfXUsnU7N5/JM6cpnj8LgFJp8tt3Nsy8msz3IPn/9I1K0keAZwNbJR0nnKDwg8AHoyFYJeDHzMyimQd+TVKZcAaC15lZ842vrrNgYJX0HYS5FvuAfVHS2J80s59ud+Xc2lQauTj9/uI5ctt2UI3fuPL+1Q3NzGbL5wrwI7Ns+3HCHLBrymKaDb8H/BfgPICZ3Q18Vzsr5dau6tQUQX2sKlSLU1SnJhtnBvARAW6dW9T1mJkdaypa6bw0bp0qjV6cUVa8eL5hRIC3WN16t5g+1mNRd4BF89m8EXiwvdVya1VpZHhm2YVzWBD9L04kSGT9xpVb3xbTYn0d8HrCaWtPEA4qfn0b6+TWqKBcauhLVTL8v10PqoQTBPrEf269W7DFambnCCfncm5e8dZqqq+fZK6H4rknGrbxbgC3ESxmVMCfAzNmHDSzV7elRm7NivevZgY2kerpnRFYk/5ggNsAFtMV8Gngn6LXvwADwHg7K+XWnqBSoTI+PQNAZnCIZL6HZFN/asrnslpTJFVjKfvukvSWqPwLkg6uUp1+XNLueda/OUo/eJek2yS9cgnHfrakT6+0jovpCmgYQxYN7v3ySk/s1pfy6HD9fbKnl0Q6A0Bm0xYmT58AQMkkiUx2Narnlm+yC1P2/ThwH3CyeYWk1wHPBW40s1FJA8CLO1u95T3SeiWwfcGt3IYSfyggMzBUf58d2gLRbADp/kG/cbUOSbpJ0lcl3SHpY5L6ovLHJP1G1HI8JOlpkm6VdDgKgLX9fyFqWd4j6R1R2X5JD0r60yjx9ecl5SW9BDgIfDg6br6pOr8M/FQtSYuZjZrZX0TH/F5Jd0q6N0q2nY3Knxe1cO8A/musXr3Rdl+P9nvhYj+TBQOrpDFJo7WvwD8Cv7TYE7j1r1KYoDw2Ul+O51lNZDIMXP4kevZcSs+efatRPbcy+aaugJfFV0raCvwK8P+Z2dMIk6P8XGyTo1GL90uECa5fQpjBqhZAbyJsrN1IOOLohugxVqLy95nZtwDDwA+Z2d9H53iFmV1vZvXJ0qLWab+ZzcglICkXnf9lZvathFfrPxWV/ynwA8ANwM7Ybm8D/tXMbiTMY/AeSYu6SbCYroD+xRzIbUxmRuHk9PMj6YGhWftVvW91zVqoK+AZwDXAf0RXIxngq7H1n4q+3gv0mdkYMCapKGkIuCl63Rlt10cYUI8CR8zsrqj8dmD/Cr6Pq6PjPRwt/wXhsNEvROXfBJD018Bro21uAn5Q0puj5Rywj0WM458zsEp62nw7mtkdCx3crX/l0WEqhehepkTPLp+vaoMR8M/zPP9fjL4Gsfe15VS0/2+Y2fsbDirtb9q+CjRf9jeI+lTHJV02W6t1GUTYSn5oqTvO12L9nXnWGfA9Sz2ZW18sCCicOl5fzm7ZNqO16ta9/wTeJ+kKM3skulTeE2sZLuRW4J2SPmxm45L2AHNP4RsaA+a6kv6NqD4viwJtH2G/6d8B+2v1BH4U+HfgG1H55WZ2GIj/g7gVeIOkN0SZtp5qZneyCHMGVjN7zmIO4DauqfNnCEpho0LJJPntc46AcWtXXtJdseXPmdlbagtmdlbSjwMfqd0MIuxzXVRgNbPPS3oy8NWoK2GcMMvVfPlIPgT8iaRJ4Nvj/azAHxN2J9wWpRosA79jZlOSXgV8TFIKuA34k2jiwtcC/ySpQNgXXAva7wR+H7hHYZ7LI8D3L+b7Upiwe4GNpGsJ+1HqzREz+8u591iegwcP2qFDXZ0YfMMJymWKF88BkEhnSKTSVKcKlEYuNmSs6tm9l9zWHatVTbc4PiSjQxbz5NWvEialvQb4DPB8wnGsLQ+srnOqxSLF82dI9Q+Q6Z976unxY0eojM8/vVAikyW7eVurq+jcmrWYcawvAb4XOG1mrwKuA3wS+DVu4sRjTJ17gvHHHpmeMqVJUC4tGFRTfQP0H7gKJXxGAOdqFpM2cMrMAkmVaJzYGWBvm+vl2sjMqEyM1xYoT4yTHdo8Y7tS7GmqRCZLKt9DUC6jZJLM4BDpgSESqXSHau3c2jHfcKv3AR8hnDFxiHAQ7e2EnctfnWs/1/2CYhFifeuVOQJrOZatKrd1u/ehOrdI87VYHwbeA+wGJgiD7HOBATO7Z6EDS9pL2A+7g3B41i1m9gcrrrFbsepU45yQ9XGoMVatUp6YTqqSjj2m6pyb35wdY2b2B2b27YTzW50nnEXxc8CLJV25iGNXgJ83s2sIn854vaRrWlBnt0KVqcmG5epkoSEZNUBpbKTeqk3mekh68hTnFm3BOw5m9riZ/ZaZPZVw8OyLCAfVLrTfqdrTWdFjbA8SzkLgVlm1KbACDUOnoLEbIDM41OYauY0kSs5yby05S1T2zigJy11RwpXdUfmTogQvxdijpUjaK+nfJD0QJWl542p9P7NZTBKWlKQfkPRh4LPAQ8QywCxG9HjaU4GvzbLutVHmm0Nnz55dymHdMi0UWC0IGpKqeDeAa4PnRElUajld32NmT4nyEnwa+F9R+QXgfwC/3bR/V18RzxlYJT1X0geB48BPECa6vtzMbjazf1jsCaJHyj4OvKmWyivOzG4xs4NmdnDbNh8L2W4WVOtPS8XVRwkAlYmxetdAIp0hmZv3EW3nVqwpNvQSzVpiZmfM7DaaHnPt9ivi+W5evRX4G8L/CjPnNF4EhbO6fhz4sJl9YjnHcK1VnZqaXkgkIAiA8AaWmSGpYZhVenDIc6i6VjPg85IMeL+Z3QIg6V3AK4ERwjR9izLfFfFqmS9XwIqSrCj8a/wz4EEz+92VHMu1TrwbIN03QGViHKtWsGqVoDhFIptrmBQw490A69bBgwc/SmP+0ZU6fejQoZsXsd0zzeyEpO3AP0v6hpl90czeBrxN0luBnwF+daEDLXRFvFoW84DAcn0nYQaZe2NJHH7ZzD7TxnNueMXhCxROHiPdP0jvJZfOaG3GA2vtEr82rUqlMIFNjGOV8KpLySSpXk/Hu14tMgi2nJmdiL6ekfRJwiTXX4xt8mHCx+fnDazdfEXctsBqZl/Gkz50VFAuM3H8MQgCShfPkR3aTLp/oGGb+FCrVL4HJRL1wFocPt9wEyu7eZt3A7iWitIKJsxsLHp/E/Brkq6sJZsGXsgCI4+6/Yq4nS1W12GTZ07W+0whbL02B9bmFqtS078C8VlWE9kc+R2eBtC13A7gk9E/7BTwN2b2OUkfl3Q1YQLsx4HXAUjaSTgVywAQSHoTYUKop9DFV8QeWNeJanGK4vnG4WrlkYvYnn31BClBpVK/zEcikclGs6mK6CZsXd/e/Z5YxbVclNn/ulnKf2iO7U8Ds01L0dVXxP6Xs07UppiOs6DaMB41/ihrMpdHEkokSDbNR5XbvotUT1/7KuvcOuct1jXIgoDJJ04SVMqke/tRMtUw/XS6f7AeUIsXz9dnTY0PtYqPTU319lGdnKiX57fv6sS34dy65YF1DZo8c5Kps6cBKF0837AuPbiJnh27GYkCa3lshKBaIZFMzWix1uS37aA8NoKAvn2XeReAcyvkgXWNCSoVps6dmXN9z849JLM5kvkeqpOFMN/qyDDZzVtnHWoF4dNVQ1dfW39AwDm3Mt40WWOK58/U7/wn0hlSfQMQBcP8jt31WVIzsfyqxeHz4WwA8aFWszym6kHVudbwFusaYtUqU+eeqC/nd+4hu2kLFgRYEJCIDZ3KDm1mMpqaujI+xvCD0yl0lUwiz/zvXNt4i3UNmbpwFqtGyVEy2XqrVIlEQ1CFWmt29qem0v2D3jp1q2a2tIGxdT8vySRtjZZnTRsYrXujpPuitIFv6uC3sCBvsa4RFgRMnZ1urea27VwwOOa27mC8PuhfpPr6yAwM+Yyqrhs8x8zOxQuiWUduAo7GimtpA1/UtO21hFn3bgRKwOckfdrMHmlnpRfLA+saUbxwbvoZ/nSa7KYtC+6TGRhi4PInEVQrpHr7SCT9x+262u8BvwjU05Ka2RngjKTva9r2ycDXzKwAIOnfCfNEv7tDdZ2X/6WtAUGpxOQT0w8A5LftXPSQqFSvD/R3Mx08eLAIJFt82OqhQ4cWM4fPjLSBkl4InDCzuxfZTXUf8C5JW4BJ4AWEj752BQ+sXc7MGD92ZLpvNZ0hu3nrKtfKuRWZkTYQ+GXCboBFMbMHJf0W8HnCyU7vAqrz7tRBHli73NTZ01Ris6X27juAEq1uaLiNZpEty7aYJW3gdwMHgFpr9RLgDkk3RrkC5jrOnxFmuELSrxPOdtIVfFRAF6sUxhtyAOS27yLt+VHdGiapV1J/7T1hK/U2M9tuZvvNbD9hgHzafEE12n979HUfYf/q37S18kvgLdYuZUHA+NEj9eVUT6+n8XPrwaxpA+faeK60gdFsAR+P+ljLwOvNbLjNdV80D6xdqjw2Up/0T4kkvfsu87Gnbs2bK21g0zb7Y+/nShuImT2rpZVrIe8K6FLF4Qv199mt20hmVq1LzDm3RB5Yu1BQrdSnSwHIDi08ZtU51z08sHah0vBFsDCjfzLf05CJyjnX/TywdqFSvBsglqXKObc2eGDtMtVSsWHcasYDq3Nrjo8KWGXF4QsUTh4jlcvTs3svpVjfaqpvIJrszzm3lniLdRVVi1NMHDuCVcqUx0cZ+eYDDRmsFpNoxbm1Zra0gZLeLulEVHaXpBdE5Vsk/ZukcUnvbTrODdFxHpH0h+qi8YjeYl0lZsbE8cfqN6miQqxaCd8rQWZgaDWq5lwnzEgbCPyemf12U9kU8D+Ba6NX3B8Tpg78GvAZ4HnAZ9tQ1yXzFusqKV44S2VivL7cPAV1ZnAIJT0ngNvYzGzCzL5MGGDrJO0CBszsP83MgL+kKWfravIW6yqolooUTk3ni8ht30l+xx6K58/W0wPmfApq10YHDx60hbdankOHDi10ST4jbWBU/jOSXkn4COvPm9nFOY8Ae2hMunI8KusKHlg7zMwonDg6PSFgNkd++24kkdu6neyWbWDmU1C79Wy2tIF/DLyTMOi+E/gd4NWrWMcV8b/eDqtMjFEeG6kv915yaUMQleRB1a1r8bSBwCeBG83sCTOrmlkA/CnhlCvzOUFjDoFLorKu4C3WDpt84lT9fXbzVk8DuMFZEFCZnKAyMU51apJkvodM/yCJbG7epDtmRnVyguLwBbJDW0j19C7pvIu4XG+LKFVgwszGYmkDf03SLjOr/XG8mHCGgDmZ2SlJo5KeQXjz6pXA/25n3ZfCA2sHlSfGGgb/ez/qxlIbCVLLWgaARCrfS6qnj8zQZqqFCSbPnqZanCLV00t2aDPJfC+SMAuoTExQHhumPDFOKt9DZmjzjBufXW7WtIGS/krS9YRdAY8BP1nbQdJjhGkDM5JeBNxkZg8APw18CMgTjgboihEBADJrWx/2kh08eNAOHeqaaWtabuzRhymPjwKQ2bSFvr0HVrlGbinMDKtUSKTTy9q3cPIoiUyW/Ladi9q+MjFOafgClakCiVQaq1RI9faS7h8k1du/nDSSXTPOc73zFmuHVArj9aAKkPfW6pphZpSGLzB1/gxCpPr6yW/ftaS+8MknTqJkalFBFcK+9nRfP+m+fswCrFJdVkB3q8MDa4dMnpmeZSIztJlkNreKtXGLVRodZurMKVJ9A/QfuBIlkpQunmf00YfIb99FMteDEon6azZTZ5/AKhV69uxbVh2kBEr7Dc21xANrB1QK4w35Vb1vtftVS0UKJ4+RSKXp238FidR0azG7eSvpgSGmzp6mNHwBCwKsWiGZ66Fn996GS/TixfNUCuM+A8QG44G1zarFImOPPVJfTg9uIuX5VbtS7Q59eWyUysQYPbv2znm3PZFK0bOrccaQySdOUjh1jJ5dYXAtj41Qunievv1XeFDdYDywtlB5bITS2Ajp3n7S/YNYtcrYkYexSvj8v5JJenZ2zcMhG5qZEZSKVAoTVArhUKfwDn0PqZ4+8jt2LzkY5nfspnD6BIVTx8kObWbyzKkwqPq45A3HA2uLVCYLjB35JgDFc2dQMoWSyemhNRJ9+6/wvtVFMjNKIxdJ5fIzZlAwMwiCZedSqBQmKJw6TiKdJtXbR3bzNpK5fEtalfkdu5l84iTjx44wcNlVJJL+J7YR+U+9BcLHVB9vLKtWpjNVAX37LvOHARapMjVJ4cRRUr19lEeHCcolMoObQaI8PoqVy5gF9F6yn9QCYzhrwwklEVQrTJ4+SVAu0bt3f1smaJREfsfuJY8acOuLB9YWKA1foFKYCBcklEph5XJ9fc+eS8kMblql2nWvoFyiOHwBK5dROk0ilaZanApv9lxyab11b9UqpZGLgNGzay/JTIagXGL88cP07N43az+omTF15hSl0WGUmG7Z5rZub/vPQhJ4n+qG5oF1AbU/0PLYCLkdu8n0DzasD6oVCqeO1ZdzW3eQ37mH8tgI5fFR0r39GzKoBtUKQalEIpVGqfDXzMplqqUi1eIk5ZFhkMhs2kKyt5+gXCaolElmczP6N5VMkt28teH4iXSGvksvj4LrXlI9ffV1FlSZOPYYyVyegSue7DeOXMd5YJ1H7RHE0sXzAIw/dpjBK68hmZvuJ5184tT0zalUOrwElMgMDG3YRNWVyQITJx4nle/BKhWCagXMSKQyJLJZkpksvfsONAxhWo5EOkPf/isYP3oEgFQ+TzLXQ/HCWXJbd2zIf2iuO3hgnYNZwMTRI9ElaK0wYPzo4bAVlEhQHh+leG56KpWe3XvXZXJqM8OqVYJKObxsT6XmvNlTvHie4oVz9O+7nESm/fN1JVJpBi67CqtWqUxNUp0qhN0Da+v5ebfOeGCdhQUB448fbkjvV1OdmqRw+jipXJ6J40fr5al1eslfLU4xfvQIiagPNJFOE5RKVIqT4R37fC9YgFWrVItToET0hFJnb9womSTd20e6t2/hjZ1rMw+ssyicPt4QVLNbtpPMZimcDPtSi+fOEMtPhFKpMK/qOuvLqxQmmDh5lL59B2YMEzMzqlOTVCcLKJVB2STpgaGWDVtybi3zwNqkNDZC8dyZ+nJu207y0aD+8tjojFZsMpenb/+VJDtw2bsYZgHF8+cwC8IWZipNsqdnxnhKM6M8OgIYiXSGRCYTjr2NgmJ5fJTJ0yfpv/TyWafgVm0wvV9yOzeDB9aYoFJm4thj9eV0/yD5nXvqwaZ3735GHn4Aq4RDqdIDQ/TtPdA1/aqVwgSFk8fIDG0imckRVMpUCuNMPnGC9OAmclu2o0SCymSBwqljpPK9KJWiPDFGUCph1SphOszwRlzfgSt8gLtzy+B/NZFwBMDj9aCpVIrevfsbLmsTqTT9B65k8swpUj295LbuWPXLXjMjKE5RvHie6tQkvfsOzBj4ntu+i+KFc4w++hDJbA6rVOjdc6k/BeZcm3hgjZQunmvIQNV7yezDgVL5HvovvbyDNZspvIwfpnjxPFapkMzmSA80tq7jJJHbso3s0GYqU5OkenpX/R+Cc+uZB9bIVKxfNbtlO5mBwXm2Xj2VqUkmTx4jmcvTu+fSJSU/rt05d861lwdWwid1qlOT9eX8zt2rWJtQODXHGKXh8FFOCB/ttCCgZ/feGYlJnHPdo22BVdIHge8HzpjZte06TytUJgv198lsblVv2FgQUB4dZur8GZK5HrJbtsXGhCq8e++X8c51tXZGkA8B7wX+so3naIl6AhUgucRphFfKgioTJ47G0gsmSPf20Xfp5St+5NM5tzraFljN7IuS9rfr+K1UjQXWpc7PvhJBtcL444fJbWl/xiXnXOesesJISa+VdEjSobNnz65KHeIt1lR+9hR0FlRbes6gXGb8yCPkt+/yoOrcOrPqN6/M7BbgFoCDBw9ap88fVMoE5VK4IJHM58PHNYtTVMZGKU+MYZUyZkZ2aAvZrdtX3MdZnhincOoYvU3p7pxz68OqB9bV1tC/ms1ROHWCSmE8HBvaP0jvnn0k0pkwL+vZ04wdeZje3ftmvStfmSwwdfZ09IholmQ2SzKbQ6l0mMG+XKZw+jgE1rHsT865zvPAGgusQbVCZnCInl2XzGiVSgov2wc2MXHycZK5HvLbd5JIpTEzihfOURq+QM/uvVgQEJSKlMfHKJ4/S1ApAwILyO/cQ7pvoMPfpXOuk9o53OojwLOBrZKOA79qZn/WrvMtV3VyOrDmd+xZcF6qZC5H/4GrKI+NMP74YVI9fQTlUv1x1/rQqKaB+PG5l5xz61s7RwW8vF3HbpUgCCiPj9eXF/tUUm2GgHT/YPgYbKJ/xpQts+3jnNsYNkRXQGVqMkzUHBv4Xy0WmTh2BCwAwsc9E0uctVOS39F3zs2wrgNrUClTOHUimoq6SiKVIrNpC0GpSGnkIumBQSqFsMWazHtiEudca6zLwGpmlC6eY+rCOXp27CYdXaZXo/R6Sibpv+xqCqeO1/fp5IMBzrn1bd0F1srEOIXTx0n3DTBw2dUNcy8lszl6otkAYPWeuHLOrW/rIrBaEFCdmgxT/5nRu3dmsufZ9oknX5ntiSvnnFuONRtYq6UixQvnwj5Sg2Q+T3bL1hnDpSwIqEyMk8zlGuZumjp7un7jKpHOLCmvqXPOzWdNBVYzozI+xtT5sGWa3bKN/PZds061bGaUhi8wefpE+MhqIkH/gatI9/ZRLU4xeeZUfdvctp2d/Dacc+vcmgqsAOWJMXp2XTLvfE3l8VEKJ481JK8mCBg/8k36L7sqvGkVDdhP5sOcp8451yprKrBKarj51CyoVCicOkbp4vlZ11tQZfTwN+pBFaD3kv0+zMo511JrKrDOxcwoj1xk4uSx+iyrAChBbtsO0v0DjD/2SDi9cyyo5rbuIJXvWYUaO+fWszUdWGsBdfLMqcbLfiA9uIne3XvrN6z691/J6JGHIZi+YZXfsfpzWznn1p81GViDSoXS8Hmmzp8lKE41rFMqTe+efTMeNU319tG//wrGHz+MBRZ2ASSTnay2c26DWDOB1cwoj49SunCO0uhwwyU9AErURwkkUrN/W+m+AYae9JRwcw+qzrk2WTOBtXTxPBPHH5tRrkSS7NZt5LbuWNTkex5QnXPttmYCa3pwCE4k6oP6k/kespu3kRnatKrTVTvnXLM1E5ESyVR9vGl20xa/m++c61prJrAC9O7eu9pVcM65Ba369NfOObfeeGB1zrkW88DqnHMt5oHVOedazAOrc861mAdW55xrMQ+szjnXYh5YnXOuxTywOudci3lgdc65FvPA6pxzLeaB1TnnWswDq3POtZgHVuecazEPrM4512IeWJ1zrsU8sDrnXIt5YHXOuRbzwOqccy3mgdU551rMA6tzzrWYB1bnnGsxD6zOOddiHlidc67FPLA651yLeWB1zrkW88DqnHMt5oHVOedazAOrc861mAdW55xrMQ+szjnXYh5YnXOuxTywOudci3lgdc65FmtrYJX0PEkPSXpE0lvaeS7nnOsWbQuskpLA+4DnA9cAL5d0TbvO55xz3SLVxmPfCDxiZo8CSPoo8ELggeUesDQyTGVyfLrAVljDGWzexdYcfYkHbfn3ONuBtcz9Vnja5Wxgs9RcjevnPtoi6j7nJs0rFJ7XFnncRZ1zruNo9h9RtLlSKXr37FtZHVxLtTOw7gGOxZaPA09fyQHL4yMUz59dUaWcW28S6Qx4YO0q7QysiyLptcBrAfbtm/+XIzOwiUQm25rzNi/N2Wibq6mwlFbeAodrz04LH1Vgy2hsaUZ1FlO/JX5mM5qiLTTzG5h56shctbbmbRc45tLVm8MLS/g96G7TzsB6AtgbW74kKmtgZrcAtwAcPHhw3t+kdP8A6f6BVtbROedarp3/6m4DrpR0QFIGuBn4VBvP55xzXaFtLVYzq0j6GeBWIAl80Mzub9f5nHOuW7S1j9XMPgN8pp3ncM65buO93s4512IeWJ1zrsU8sDrnXIt5YHXOuRbzwOqccy3mgdU551rMA6tzzrWYB1bnnGsx2XKycLSJpLPA47Os2gqc63B1urEO0B318DpM64Z6LLYO58zsee2ujOuywDoXSYfM7OBGr0O31MPr0F316IY6uEbeFeCccy3mgdU551psrQTWW1a7AnRHHaA76uF1mNYN9eiGOriYNdHH6pxza8laabE659ya4YHVOedabNUCq6QPSjoj6b5Y2XWSvirpXkn/KGkgtu4p0br7o/W5qPyGaPkRSX8oLX5Wt6XUQdIrJN0VewWSru9wHdKS/iIqf1DSW2P7PE/SQ1Ed3rLY8y+jDhlJfx6V3y3p2bF9VvI57JX0b5IeiH7Gb4zKN0v6Z0nfjL5uisoVneMRSfdIelrsWD8Wbf9NST+2xM9iqfV4UvQ5FSW9uelYy/qZLKMOr4g+g3slfUXSdSutg1shM1uVF/BdwNOA+2JltwHfHb1/NfDO6H0KuAe4LlreAiSj918HnkE4reVngee3ow5N+30rcDi23JE6AD8MfDR63wM8BuwnnPrmMHAZkAHuBq5pUx1eD/x59H47cDuQaMHnsAt4WvS+H3gYuAZ4N/CWqPwtwG9F718QnUPROb8WlW8GHo2+boreb2pjPbYD3wa8C3hz7DjL/pksow7fUfsegefHPosV/V74a/mv1T15GBTif8wjTN9Q2ws8EL1/AfDXs+y/C/hGbPnlwPvbUYemfX4deFen6xAd+x8J/9Fsif7gNgPfDtwa2/+twFvbVIf3AT8a2+5fgBtb8Tk01ecfgOcCDwG7Yp/1Q9H79wMvj23/ULS+4bzN27W6HrHt3k5jYF3xz2SpdYjKNwEnWl0Hfy3t1W19rPcDL4zev5Tp6bOvAkzSrZLukPSLUfke4Hhs/+NRWTvqEPcy4COrUIe/ByaAU8BR4LfN7EJ0vmMdqsPdwA9KSkk6ANwQrWvZ5yBpP/BU4GvADjM7Fa06DeyI3s/1Pbfss1hkPebSknosow6vIWzJt6wObum6LbC+GvhpSbcTXgKVovIU8EzgFdHXF0v63g7XAQBJTwcKZnbfbDu3uQ43AlVgN3AA+HlJl3W4Dh8k/AM9BPw+8JWoTi0hqQ/4OPAmMxuNr7Ow2dWR8YHdUI+l1kHScwgD6y+1u25ufm2dpXWpzOwbwE0Akq4Cvi9adRz4opmdi9Z9hrBP8K+BS2KHuAQ40aY61NzMdGuV6HydqsMPA58zszJwRtJ/AAcJWyXxlnXb6mBmFeBna9tJ+gphl8RFVvg5SEoTBpIPm9knouInJO0ys1OSdgFnovITzP49nwCe3VT+hTbWYy5z1a8tdZD0FOADhP3a51tRB7d8XdVilbQ9+poAfgX4k2jVrcC3SuqRlAK+m7DP7xQwKukZ0R3oVxL2R7WjDrWy/wZ8tFbW4TocBb4nWtdLeNPmG4Q3mq6UdEBShjD4f6oddYh+Br3R++cCFTNb8c8i2ufPgAfN7Hdjqz4F1O7s/1jsmJ8CXhmNDngGMBLV4VbgJkmborvmN0Vl7arHXJb9M1lqHSTtAz5B2Pf9cCvq4FZotTp3CVt9p4AyYYv0NcAbCVs/DwO/SXTzJNr+Rwj7/e4D3h0rPxiVHQbeG9+nDXV4NvCfsxynI3UA+oCPRZ/DA8AvxI7zgmj7w8Db2vWzILzJ9RDwIPB/gUtb9Dk8k/DS9h7gruj1AsKbdP8CfDM63+ZoexHeSDsM3AscjB3r1cAj0etVS/wsllqPndFnNgoMR+8HVvIzWUYdPkB4xVDb9lArfi/8tfyXP9LqnHMt1lVdAc45tx54YHXOuRbzwOqccy3mgdU551rMA6tzzrWYB9Z1Khrf+WVJz4+VvVTS51p4jj5J75d0WNLtkr4QPZm22P3f3pwRyrn1oKuevHKtY2Ym6XXAxyT9G+HP+teBZU1/LCll4VNXcR8AjgBXmlkQ5Q64ZiX1dm498HGs65ykdxMmbumNvl4KXAukgbeb2T9EiT7+KtoG4GfM7CsKc62+k3Dw+ZPM7KrYcS8nHKR+hZnNyBUg6ecIB+oDfMDMfj8qfxvhU0NnCB/Fvd3Mfjs63vuAbUAB+AkLH6t1bs3xFuv69w7gDsIkKp8G/tXMXi1pCPi6pP9LGOSea2ZTkq4kfBKrNk/904BrzexI03G/BbhrjqB6A/Aq4OmET0h9TdK/E3Y93QxcT/i7dwdhPlcIJ8R7nZl9M+pO+COix3edW2s8sK5zZjYh6W+BccI8Bz8Q69fMAfuAk8B7Fc6IUCVM01jz9VmC6kKeCXzSzCYAJH0CeBZhYP2kmRWi8k9FX/sIkzV/TNOTDmSXeE7nuoYH1o0hiF4CfsjMHoqvlPR24AngOsLgNxVbPTHHMe8HrpOUnK3VukQJYNjMrl/hcZzrCj4qYGO5FXhDlD0JSU+NygeBU2YWAD9KOKXHvMzsMGFO1nfEjrdf0vcBXwJeFMuE9eKo7ItReV5SP/AD0bFGgSOSXhodR4rN2+TcWuOBdWN5J+FNq3sk3R8tQ9if+WOS7gaexNyt1Gb/nTCL/SMKJyL8EHDGzO6I3n+dMPP9B8zszqj8bwlnIfgsYVq7mlcAr4nqEJ+9wLk1x0cFOOdci3mL1TnnWswDq3POtZgHVuecazEPrM4512IeWJ1zrsU8sDrnXIt5YHXOuRb7f7EOQsCXZ+x4AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import seaborn as sns\n",
+ "pak = pd.read_csv(\"Pakistan.csv\")\n",
+ "#ind = pd.read_csv(\"India.csv\")\n",
+ "\n",
+ "\n",
+ "#plot lineplot\n",
+ "\n",
+ "sns.relplot(data=pak,x=\"Year Code\",y=\"Value\",hue=\"Area Code\",size=\"Element Code\",col=\"Item Code\",kind=\"line\",size_order=[\"T1\",\"T2\"],height=5,aspect=.75,facet_kws=dict(sharex=False))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "hovertemplate": "%{hovertext}
Year Code=%{x}
Value=%{y}
Element Code=%{marker.size}
Area Code=%{marker.color}",
+ "hovertext": [
+ 1717,
+ 1717,
+ 1717
+ ],
+ "legendgroup": "",
+ "marker": {
+ "color": [
+ 165,
+ 165,
+ 165
+ ],
+ "coloraxis": "coloraxis",
+ "size": [
+ 5312,
+ 5419,
+ 5510
+ ],
+ "sizemode": "area",
+ "sizeref": 1.5305555555555554,
+ "symbol": "circle"
+ },
+ "mode": "markers",
+ "name": "",
+ "orientation": "v",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ 2020,
+ 2020,
+ 2020
+ ],
+ "xaxis": "x",
+ "y": [
+ 14082566,
+ 30208,
+ 42540915
+ ],
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "coloraxis": {
+ "colorbar": {
+ "title": {
+ "text": "Area Code"
+ }
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "legend": {
+ "itemsizing": "constant",
+ "tracegroupgap": 0
+ },
+ "margin": {
+ "t": 60
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Year Code"
+ },
+ "type": "log"
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Value"
+ }
+ }
+ }
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import plotly.express as px\n",
+ "pak = pd.read_csv(\"Pakistan.csv\")\n",
+ "#ind = pd.read_csv(\"India.csv\")\n",
+ "\n",
+ "fig = px.scatter(pak.query(\"Year==2020\"), x=\"Year Code\", y=\"Value\",\n",
+ " size=\"Element Code\", color=\"Area Code\",\n",
+ " hover_name=\"Item Code\", log_x=True, size_max=60)\n",
+ "fig.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "hovertemplate": "%{hovertext}
Flag=A
Element Code=%{marker.size}
Element=%{y}",
+ "hovertext": [
+ "ha",
+ "tonnes"
+ ],
+ "legendgroup": "A",
+ "marker": {
+ "color": "#636efa",
+ "size": [
+ 5312,
+ 5510
+ ],
+ "sizemode": "area",
+ "sizeref": 1.5305555555555554,
+ "symbol": "circle"
+ },
+ "mode": "markers",
+ "name": "A",
+ "orientation": "h",
+ "showlegend": true,
+ "type": "scatter",
+ "x": [
+ 5312,
+ 5510
+ ],
+ "xaxis": "x",
+ "y": [
+ "Area harvested",
+ "Production"
+ ],
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "%{hovertext}
Flag=Fc
Element Code=%{marker.size}
Element=%{y}",
+ "hovertext": [
+ "hg/ha"
+ ],
+ "legendgroup": "Fc",
+ "marker": {
+ "color": "#EF553B",
+ "size": [
+ 5419
+ ],
+ "sizemode": "area",
+ "sizeref": 1.5305555555555554,
+ "symbol": "circle"
+ },
+ "mode": "markers",
+ "name": "Fc",
+ "orientation": "h",
+ "showlegend": true,
+ "type": "scatter",
+ "x": [
+ 5419
+ ],
+ "xaxis": "x",
+ "y": [
+ "Yield"
+ ],
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "legend": {
+ "itemsizing": "constant",
+ "title": {
+ "text": "Flag"
+ },
+ "tracegroupgap": 0
+ },
+ "margin": {
+ "t": 60
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "heatmapgl": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmapgl"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Element Code"
+ },
+ "type": "log"
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Element"
+ }
+ }
+ }
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "import plotly.express as px\n",
+ "pak = pd.read_csv(\"Pakistan.csv\")\n",
+ "#ind = pd.read_csv(\"India.csv\")\n",
+ "\n",
+ "fig = px.scatter(pak.query(\"Year==2020\"), x=\"Element Code\", y=\"Element\",\n",
+ " size=\"Element Code\", color=\"Flag\",\n",
+ " hover_name=\"Unit\", log_x=True, size_max=60)\n",
+ "fig.show()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "e626341f7d273a073ca6760d51f453142864e91a54b48c38f50eacc9d94e2c4c"
+ },
+ "kernelspec": {
+ "display_name": "Python 3.10.0 64-bit",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.10.0"
+ },
+ "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}