You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
We design a function $\textit{dfs}(i, j, k)$, which represents the maximum amount of coins the robot can collect starting from $(i, j)$ with $k$ conversion opportunities left. The robot can only move right or down, so the value of $\textit{dfs}(i, j, k)$ depends only on $\textit{dfs}(i + 1, j, k)$ and $\textit{dfs}(i, j + 1, k)$.
91
+
92
+
- If $i \geq m$ or $j \geq n$, it means the robot has moved out of the grid, so we return a very small value.
93
+
- If $i = m - 1$ and $j = n - 1$, it means the robot has reached the bottom-right corner of the grid. If $k > 0$, the robot can choose to convert the bandit at the current position, so we return $\max(0, \textit{coins}[i][j])$. If $k = 0$, the robot cannot convert the bandit at the current position, so we return $\textit{coins}[i][j]$.
94
+
- If $\textit{coins}[i][j] < 0$, it means there is a bandit at the current position. If $k > 0$, the robot can choose to convert the bandit at the current position, so we return $\textit{coins}[i][j] + \max(\textit{dfs}(i + 1, j, k), \textit{dfs}(i, j + 1, k))$. If $k = 0$, the robot cannot convert the bandit at the current position, so we return $\textit{coins}[i][j] + \max(\textit{dfs}(i + 1, j, k), \textit{dfs}(i, j + 1, k))$.
95
+
96
+
Based on the above analysis, we can write the code for memoized search.
97
+
98
+
The time complexity is $O(m \times n \times k)$, and the space complexity is $O(m \times n \times k)$. Here, $m$ and $n$ are the number of rows and columns of the 2D array $\textit{coins}$, and $k$ is the number of conversion opportunities, which is $3$ in this problem.
0 commit comments