Skip to content

Commit 8ce5ad2

Browse files
authored
feat: add solutions to lc problem: No.1877 (#4041)
No.1877.Minimize Maximum Pair Sum in Array
1 parent 9c092cf commit 8ce5ad2

File tree

8 files changed

+122
-20
lines changed

8 files changed

+122
-20
lines changed

solution/1800-1899/1866.Number of Ways to Rearrange Sticks With K Sticks Visible/README.md

+6-4
Original file line numberDiff line numberDiff line change
@@ -82,9 +82,7 @@ $$
8282

8383
最终答案为 $f[n][k]$。
8484

85-
我们注意到 $f[i][j]$ 只跟 $f[i - 1][j - 1]$ 和 $f[i - 1][j]$ 有关,因此可以使用一维数组优化空间复杂度。
86-
87-
时间复杂度 $O(n \times k)$,空间复杂度 $O(k)$。其中 $n$ 和 $k$ 分别是题目中给定的两个整数。
85+
时间复杂度 $O(n \times k)$,空间复杂度 $O(n \times k)$。其中 $n$ 和 $k$ 分别是题目中给定的两个整数。
8886

8987
<!-- tabs:start -->
9088

@@ -183,7 +181,11 @@ function rearrangeSticks(n: number, k: number): number {
183181

184182
<!-- solution:start -->
185183

186-
### 方法二
184+
### 方法二:动态规划(空间优化)
185+
186+
我们注意到 $f[i][j]$ 只跟 $f[i - 1][j - 1]$ 和 $f[i - 1][j]$ 有关,因此可以使用一维数组优化空间复杂度。
187+
188+
时间复杂度 $O(n \times k)$,空间复杂度 $O(k)$。其中 $n$ 和 $k$ 分别是题目中给定的两个整数。
187189

188190
<!-- tabs:start -->
189191

solution/1800-1899/1866.Number of Ways to Rearrange Sticks With K Sticks Visible/README_EN.md

+6-4
Original file line numberDiff line numberDiff line change
@@ -83,9 +83,7 @@ $$
8383

8484
The final answer is $f[n][k]$.
8585

86-
We notice that $f[i][j]$ is only related to $f[i - 1][j - 1]$ and $f[i - 1][j]$, so we can use a one-dimensional array to optimize the space complexity.
87-
88-
The time complexity is $O(n \times k)$, and the space complexity is $O(k)$. Here, $n$ and $k$ are the two integers given in the problem.
86+
The time complexity is $O(n \times k)$, and the space complexity is $O(n \times k)$. Where $n$ and $k$ are the two integers given in the problem.
8987

9088
<!-- tabs:start -->
9189

@@ -184,7 +182,11 @@ function rearrangeSticks(n: number, k: number): number {
184182

185183
<!-- solution:start -->
186184

187-
### Solution 2
185+
### Solution 2: Dynamic Programming (Space Optimization)
186+
187+
We notice that $f[i][j]$ is only related to $f[i - 1][j - 1]$ and $f[i - 1][j]$, so we can use a one-dimensional array to optimize the space complexity.
188+
189+
The time complexity is $O(n \times k)$, and the space complexity is $O(k)$. Here, $n$ and $k$ are the two integers given in the problem.
188190

189191
<!-- tabs:start -->
190192

solution/1800-1899/1877.Minimize Maximum Pair Sum in Array/README.md

+38-4
Original file line numberDiff line numberDiff line change
@@ -77,7 +77,7 @@ tags:
7777

7878
因此,我们可以先对数组进行排序,然后使用两个指针分别指向数组的两端,求出两个指针指向的数的和,更新最大数对和的值,然后将左指针右移一位,右指针左移一位,继续进行操作,直到两个指针相遇为止,即可得到最小的最大数对和。
7979

80-
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 是数组的长度
80+
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 是数组 $\textit{nums}$ 的长度
8181

8282
<!-- tabs:start -->
8383

@@ -87,8 +87,7 @@ tags:
8787
class Solution:
8888
def minPairSum(self, nums: List[int]) -> int:
8989
nums.sort()
90-
n = len(nums)
91-
return max(x + nums[n - i - 1] for i, x in enumerate(nums[: n >> 1]))
90+
return max(x + nums[-i - 1] for i, x in enumerate(nums[: len(nums) >> 1]))
9291
```
9392

9493
#### Java
@@ -112,7 +111,7 @@ class Solution {
112111
class Solution {
113112
public:
114113
int minPairSum(vector<int>& nums) {
115-
sort(nums.begin(), nums.end());
114+
ranges::sort(nums);
116115
int ans = 0, n = nums.size();
117116
for (int i = 0; i < n >> 1; ++i) {
118117
ans = max(ans, nums[i] + nums[n - i - 1]);
@@ -149,6 +148,41 @@ function minPairSum(nums: number[]): number {
149148
}
150149
```
151150

151+
#### Rust
152+
153+
```rust
154+
impl Solution {
155+
pub fn min_pair_sum(nums: Vec<i32>) -> i32 {
156+
let mut nums = nums;
157+
nums.sort();
158+
let mut ans = 0;
159+
let n = nums.len();
160+
for i in 0..n / 2 {
161+
ans = ans.max(nums[i] + nums[n - i - 1]);
162+
}
163+
ans
164+
}
165+
}
166+
```
167+
168+
#### JavaScript
169+
170+
```js
171+
/**
172+
* @param {number[]} nums
173+
* @return {number}
174+
*/
175+
var minPairSum = function (nums) {
176+
nums.sort((a, b) => a - b);
177+
let ans = 0;
178+
const n = nums.length;
179+
for (let i = 0; i < n >> 1; ++i) {
180+
ans = Math.max(ans, nums[i] + nums[n - 1 - i]);
181+
}
182+
return ans;
183+
};
184+
```
185+
152186
#### C#
153187

154188
```cs

solution/1800-1899/1877.Minimize Maximum Pair Sum in Array/README_EN.md

+44-4
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,13 @@ The maximum pair sum is max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8.
9393

9494
<!-- solution:start -->
9595

96-
### Solution 1
96+
### Solution 1: Greedy
97+
98+
To minimize the maximum pair sum in the array, we can pair the smallest number with the largest number, the second smallest with the second largest, and so on.
99+
100+
Therefore, we can first sort the array, then use two pointers to point to the two ends of the array. Calculate the sum of the numbers pointed to by the two pointers, update the maximum pair sum, then move the left pointer one step to the right and the right pointer one step to the left. Continue this process until the two pointers meet, and we will get the minimum maximum pair sum.
101+
102+
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array $\textit{nums}$.
97103

98104
<!-- tabs:start -->
99105

@@ -103,8 +109,7 @@ The maximum pair sum is max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8.
103109
class Solution:
104110
def minPairSum(self, nums: List[int]) -> int:
105111
nums.sort()
106-
n = len(nums)
107-
return max(x + nums[n - i - 1] for i, x in enumerate(nums[: n >> 1]))
112+
return max(x + nums[-i - 1] for i, x in enumerate(nums[: len(nums) >> 1]))
108113
```
109114

110115
#### Java
@@ -128,7 +133,7 @@ class Solution {
128133
class Solution {
129134
public:
130135
int minPairSum(vector<int>& nums) {
131-
sort(nums.begin(), nums.end());
136+
ranges::sort(nums);
132137
int ans = 0, n = nums.size();
133138
for (int i = 0; i < n >> 1; ++i) {
134139
ans = max(ans, nums[i] + nums[n - i - 1]);
@@ -165,6 +170,41 @@ function minPairSum(nums: number[]): number {
165170
}
166171
```
167172

173+
#### Rust
174+
175+
```rust
176+
impl Solution {
177+
pub fn min_pair_sum(nums: Vec<i32>) -> i32 {
178+
let mut nums = nums;
179+
nums.sort();
180+
let mut ans = 0;
181+
let n = nums.len();
182+
for i in 0..n / 2 {
183+
ans = ans.max(nums[i] + nums[n - i - 1]);
184+
}
185+
ans
186+
}
187+
}
188+
```
189+
190+
#### JavaScript
191+
192+
```js
193+
/**
194+
* @param {number[]} nums
195+
* @return {number}
196+
*/
197+
var minPairSum = function (nums) {
198+
nums.sort((a, b) => a - b);
199+
let ans = 0;
200+
const n = nums.length;
201+
for (let i = 0; i < n >> 1; ++i) {
202+
ans = Math.max(ans, nums[i] + nums[n - 1 - i]);
203+
}
204+
return ans;
205+
};
206+
```
207+
168208
#### C#
169209

170210
```cs
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
11
class Solution {
22
public:
33
int minPairSum(vector<int>& nums) {
4-
sort(nums.begin(), nums.end());
4+
ranges::sort(nums);
55
int ans = 0, n = nums.size();
66
for (int i = 0; i < n >> 1; ++i) {
77
ans = max(ans, nums[i] + nums[n - i - 1]);
88
}
99
return ans;
1010
}
11-
};
11+
};
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
/**
2+
* @param {number[]} nums
3+
* @return {number}
4+
*/
5+
var minPairSum = function (nums) {
6+
nums.sort((a, b) => a - b);
7+
let ans = 0;
8+
const n = nums.length;
9+
for (let i = 0; i < n >> 1; ++i) {
10+
ans = Math.max(ans, nums[i] + nums[n - 1 - i]);
11+
}
12+
return ans;
13+
};
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,4 @@
11
class Solution:
22
def minPairSum(self, nums: List[int]) -> int:
33
nums.sort()
4-
n = len(nums)
5-
return max(x + nums[n - i - 1] for i, x in enumerate(nums[: n >> 1]))
4+
return max(x + nums[-i - 1] for i, x in enumerate(nums[: len(nums) >> 1]))
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,12 @@
1+
impl Solution {
2+
pub fn min_pair_sum(nums: Vec<i32>) -> i32 {
3+
let mut nums = nums;
4+
nums.sort();
5+
let mut ans = 0;
6+
let n = nums.len();
7+
for i in 0..n / 2 {
8+
ans = ans.max(nums[i] + nums[n - i - 1]);
9+
}
10+
ans
11+
}
12+
}

0 commit comments

Comments
 (0)