Skip to content

Commit e100c8b

Browse files
authored
feat: add solutions to lc problem: No.0598 (#4011)
No.0598.Range Addition II
1 parent 4faa639 commit e100c8b

File tree

6 files changed

+134
-5
lines changed

6 files changed

+134
-5
lines changed

solution/0500-0599/0598.Range Addition II/README.md

+51-1
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,13 @@ tags:
6767

6868
<!-- solution:start -->
6969

70-
### 方法一
70+
### 方法一:脑筋急转弯
71+
72+
我们注意到,所有操作子矩阵的交集就是最终的最大整数所在的子矩阵,并且每个操作子矩阵都是从左上角 $(0, 0)$ 开始的,因此,我们遍历所有操作子矩阵,求出行数和列数的最小值,最后返回这两个值的乘积即可。
73+
74+
注意,如果操作数组为空,那么矩阵中的最大整数个数就是 $m \times n$。
75+
76+
时间复杂度 $O(k)$,其中 $k$ 是操作数组 $\textit{ops}$ 的长度。空间复杂度 $O(1)$。
7177

7278
<!-- tabs:start -->
7379

@@ -123,6 +129,50 @@ func maxCount(m int, n int, ops [][]int) int {
123129
}
124130
```
125131

132+
#### TypeScript
133+
134+
```ts
135+
function maxCount(m: number, n: number, ops: number[][]): number {
136+
for (const [a, b] of ops) {
137+
m = Math.min(m, a);
138+
n = Math.min(n, b);
139+
}
140+
return m * n;
141+
}
142+
```
143+
144+
#### Rust
145+
146+
```rust
147+
impl Solution {
148+
pub fn max_count(mut m: i32, mut n: i32, ops: Vec<Vec<i32>>) -> i32 {
149+
for op in ops {
150+
m = m.min(op[0]);
151+
n = n.min(op[1]);
152+
}
153+
m * n
154+
}
155+
}
156+
```
157+
158+
#### JavaScript
159+
160+
```js
161+
/**
162+
* @param {number} m
163+
* @param {number} n
164+
* @param {number[][]} ops
165+
* @return {number}
166+
*/
167+
var maxCount = function (m, n, ops) {
168+
for (const [a, b] of ops) {
169+
m = Math.min(m, a);
170+
n = Math.min(n, b);
171+
}
172+
return m * n;
173+
};
174+
```
175+
126176
<!-- tabs:end -->
127177

128178
<!-- solution:end -->

solution/0500-0599/0598.Range Addition II/README_EN.md

+52-2
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,13 @@ tags:
6161

6262
<!-- solution:start -->
6363

64-
### Solution 1
64+
### Solution 1: Brain Teaser
65+
66+
We notice that the intersection of all operation submatrices is the submatrix where the final maximum integer is located, and each operation submatrix starts from the top-left corner $(0, 0)$. Therefore, we traverse all operation submatrices to find the minimum number of rows and columns. Finally, we return the product of these two values.
67+
68+
Note that if the operation array is empty, the number of maximum integers in the matrix is $m \times n$.
69+
70+
The time complexity is $O(k)$, where $k$ is the length of the operation array $\textit{ops}$. The space complexity is $O(1)$.
6571

6672
<!-- tabs:start -->
6773

@@ -96,7 +102,7 @@ class Solution {
96102
class Solution {
97103
public:
98104
int maxCount(int m, int n, vector<vector<int>>& ops) {
99-
for (auto op : ops) {
105+
for (const auto& op : ops) {
100106
m = min(m, op[0]);
101107
n = min(n, op[1]);
102108
}
@@ -117,6 +123,50 @@ func maxCount(m int, n int, ops [][]int) int {
117123
}
118124
```
119125

126+
#### TypeScript
127+
128+
```ts
129+
function maxCount(m: number, n: number, ops: number[][]): number {
130+
for (const [a, b] of ops) {
131+
m = Math.min(m, a);
132+
n = Math.min(n, b);
133+
}
134+
return m * n;
135+
}
136+
```
137+
138+
#### Rust
139+
140+
```rust
141+
impl Solution {
142+
pub fn max_count(mut m: i32, mut n: i32, ops: Vec<Vec<i32>>) -> i32 {
143+
for op in ops {
144+
m = m.min(op[0]);
145+
n = n.min(op[1]);
146+
}
147+
m * n
148+
}
149+
}
150+
```
151+
152+
#### JavaScript
153+
154+
```js
155+
/**
156+
* @param {number} m
157+
* @param {number} n
158+
* @param {number[][]} ops
159+
* @return {number}
160+
*/
161+
var maxCount = function (m, n, ops) {
162+
for (const [a, b] of ops) {
163+
m = Math.min(m, a);
164+
n = Math.min(n, b);
165+
}
166+
return m * n;
167+
};
168+
```
169+
120170
<!-- tabs:end -->
121171

122172
<!-- solution:end -->
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
11
class Solution {
22
public:
33
int maxCount(int m, int n, vector<vector<int>>& ops) {
4-
for (auto op : ops) {
4+
for (const auto& op : ops) {
55
m = min(m, op[0]);
66
n = min(n, op[1]);
77
}
88
return m * n;
99
}
10-
};
10+
};
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
/**
2+
* @param {number} m
3+
* @param {number} n
4+
* @param {number[][]} ops
5+
* @return {number}
6+
*/
7+
var maxCount = function (m, n, ops) {
8+
for (const [a, b] of ops) {
9+
m = Math.min(m, a);
10+
n = Math.min(n, b);
11+
}
12+
return m * n;
13+
};
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
impl Solution {
2+
pub fn max_count(mut m: i32, mut n: i32, ops: Vec<Vec<i32>>) -> i32 {
3+
for op in ops {
4+
m = m.min(op[0]);
5+
n = n.min(op[1]);
6+
}
7+
m * n
8+
}
9+
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
function maxCount(m: number, n: number, ops: number[][]): number {
2+
for (const [a, b] of ops) {
3+
m = Math.min(m, a);
4+
n = Math.min(n, b);
5+
}
6+
return m * n;
7+
}

0 commit comments

Comments
 (0)