diff --git a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/README.md b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/README.md index 31998e5c3308e..14e84ddb16aed 100644 --- a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/README.md +++ b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/README.md @@ -32,7 +32,7 @@ tags:

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
-输出: 6 
+输出: 6
 解释: 节点 2 和节点 8 的最近公共祖先是 6。
 
@@ -57,15 +57,11 @@ tags: -### 方法一:迭代或递归 +### 方法一:迭代 -从上到下搜索,找到第一个值位于 $[p.val, q.val]$ 之间的结点即可。 +我们从根节点开始遍历,如果当前节点的值小于 $\textit{p}$ 和 $\textit{q}$ 的值,说明 $\textit{p}$ 和 $\textit{q}$ 应该在当前节点的右子树,因此将当前节点移动到右子节点;如果当前节点的值大于 $\textit{p}$ 和 $\textit{q}$ 的值,说明 $\textit{p}$ 和 $\textit{q}$ 应该在当前节点的左子树,因此将当前节点移动到左子节点;否则说明当前节点就是 $\textit{p}$ 和 $\textit{q}$ 的最近公共祖先,返回当前节点即可。 -既可以用迭代实现,也可以用递归实现。 - -迭代的时间复杂度为 $O(n)$,空间复杂度为 $O(1)$。 - -递归的时间复杂度为 $O(n)$,空间复杂度为 $O(n)$。 +时间复杂度 $O(n)$,其中 $n$ 是二叉搜索树的节点个数。空间复杂度 $O(1)$。 @@ -164,9 +160,9 @@ public: func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode { for { - if root.Val < p.Val && root.Val < q.Val { + if root.Val < min(p.Val, q.Val) { root = root.Right - } else if root.Val > p.Val && root.Val > q.Val { + } else if root.Val > max(p.Val, q.Val) { root = root.Left } else { return root @@ -209,13 +205,47 @@ function lowestCommonAncestor( } ``` +#### C# + +```cs +/** + * Definition for a binary tree node. + * public class TreeNode { + * public int val; + * public TreeNode left; + * public TreeNode right; + * public TreeNode(int x) { val = x; } + * } + */ + +public class Solution { + public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { + while (true) { + if (root.val < Math.Min(p.val, q.val)) { + root = root.right; + } else if (root.val > Math.Max(p.val, q.val)) { + root = root.left; + } else { + return root; + } + } + } +} +``` + -### 方法二 +### 方法二:递归 + +我们也可以使用递归的方法来解决这个问题。 + +我们首先判断当前节点的值是否小于 $\textit{p}$ 和 $\textit{q}$ 的值,如果是,则递归遍历右子树;如果当前节点的值大于 $\textit{p}$ 和 $\textit{q}$ 的值,如果是,则递归遍历左子树;否则说明当前节点就是 $\textit{p}$ 和 $\textit{q}$ 的最近公共祖先,返回当前节点即可。 + +时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉搜索树的节点个数。 @@ -339,12 +369,42 @@ function lowestCommonAncestor( p: TreeNode | null, q: TreeNode | null, ): TreeNode | null { - if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q); - if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q); + if (root.val > p.val && root.val > q.val) { + return lowestCommonAncestor(root.left, p, q); + } + if (root.val < p.val && root.val < q.val) { + return lowestCommonAncestor(root.right, p, q); + } return root; } ``` +#### C# + +```cs +/** + * Definition for a binary tree node. + * public class TreeNode { + * public int val; + * public TreeNode left; + * public TreeNode right; + * public TreeNode(int x) { val = x; } + * } + */ + +public class Solution { + public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { + if (root.val < Math.Min(p.val, q.val)) { + return LowestCommonAncestor(root.right, p, q); + } + if (root.val > Math.Max(p.val, q.val)) { + return LowestCommonAncestor(root.left, p, q); + } + return root; + } +} +``` + diff --git a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/README_EN.md b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/README_EN.md index 9e5d7066ef095..1fe8be223eb17 100644 --- a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/README_EN.md +++ b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/README_EN.md @@ -64,7 +64,11 @@ tags: -### Solution 1 +### Solution 1: Iteration + +Starting from the root node, we traverse the tree. If the current node's value is less than both $\textit{p}$ and $\textit{q}$ values, it means that $\textit{p}$ and $\textit{q}$ should be in the right subtree of the current node, so we move to the right child. If the current node's value is greater than both $\textit{p}$ and $\textit{q}$ values, it means that $\textit{p}$ and $\textit{q}$ should be in the left subtree, so we move to the left child. Otherwise, it means the current node is the lowest common ancestor of $\textit{p}$ and $\textit{q}$, so we return the current node. + +The time complexity is $O(n)$, where $n$ is the number of nodes in the binary search tree. The space complexity is $O(1)$. @@ -163,9 +167,9 @@ public: func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode { for { - if root.Val < p.Val && root.Val < q.Val { + if root.Val < min(p.Val, q.Val) { root = root.Right - } else if root.Val > p.Val && root.Val > q.Val { + } else if root.Val > max(p.Val, q.Val) { root = root.Left } else { return root @@ -208,13 +212,47 @@ function lowestCommonAncestor( } ``` +#### C# + +```cs +/** + * Definition for a binary tree node. + * public class TreeNode { + * public int val; + * public TreeNode left; + * public TreeNode right; + * public TreeNode(int x) { val = x; } + * } + */ + +public class Solution { + public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { + while (true) { + if (root.val < Math.Min(p.val, q.val)) { + root = root.right; + } else if (root.val > Math.Max(p.val, q.val)) { + root = root.left; + } else { + return root; + } + } + } +} +``` + -### Solution 2 +### Solution 2: Recursion + +We can also use a recursive approach to solve this problem. + +We first check if the current node's value is less than both $\textit{p}$ and $\textit{q}$ values. If it is, we recursively traverse the right subtree. If the current node's value is greater than both $\textit{p}$ and $\textit{q}$ values, we recursively traverse the left subtree. Otherwise, it means the current node is the lowest common ancestor of $\textit{p}$ and $\textit{q}$, so we return the current node. + +The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the number of nodes in the binary search tree. @@ -338,12 +376,42 @@ function lowestCommonAncestor( p: TreeNode | null, q: TreeNode | null, ): TreeNode | null { - if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q); - if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q); + if (root.val > p.val && root.val > q.val) { + return lowestCommonAncestor(root.left, p, q); + } + if (root.val < p.val && root.val < q.val) { + return lowestCommonAncestor(root.right, p, q); + } return root; } ``` +#### C# + +```cs +/** + * Definition for a binary tree node. + * public class TreeNode { + * public int val; + * public TreeNode left; + * public TreeNode right; + * public TreeNode(int x) { val = x; } + * } + */ + +public class Solution { + public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { + if (root.val < Math.Min(p.val, q.val)) { + return LowestCommonAncestor(root.right, p, q); + } + if (root.val > Math.Max(p.val, q.val)) { + return LowestCommonAncestor(root.left, p, q); + } + return root; + } +} +``` + diff --git a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution.cs b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution.cs new file mode 100644 index 0000000000000..0c62318d00082 --- /dev/null +++ b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution.cs @@ -0,0 +1,23 @@ +/** + * Definition for a binary tree node. + * public class TreeNode { + * public int val; + * public TreeNode left; + * public TreeNode right; + * public TreeNode(int x) { val = x; } + * } + */ + +public class Solution { + public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { + while (true) { + if (root.val < Math.Min(p.val, q.val)) { + root = root.right; + } else if (root.val > Math.Max(p.val, q.val)) { + root = root.left; + } else { + return root; + } + } + } +} diff --git a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution.go b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution.go index 46ac599a9e887..3985db3bf9472 100644 --- a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution.go +++ b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution.go @@ -9,12 +9,12 @@ func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode { for { - if root.Val < p.Val && root.Val < q.Val { + if root.Val < min(p.Val, q.Val) { root = root.Right - } else if root.Val > p.Val && root.Val > q.Val { + } else if root.Val > max(p.Val, q.Val) { root = root.Left } else { return root } } -} \ No newline at end of file +} diff --git a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution2.cs b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution2.cs new file mode 100644 index 0000000000000..4b0f3a40385be --- /dev/null +++ b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution2.cs @@ -0,0 +1,21 @@ +/** + * Definition for a binary tree node. + * public class TreeNode { + * public int val; + * public TreeNode left; + * public TreeNode right; + * public TreeNode(int x) { val = x; } + * } + */ + +public class Solution { + public TreeNode LowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { + if (root.val < Math.Min(p.val, q.val)) { + return LowestCommonAncestor(root.right, p, q); + } + if (root.val > Math.Max(p.val, q.val)) { + return LowestCommonAncestor(root.left, p, q); + } + return root; + } +} \ No newline at end of file diff --git a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution2.ts b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution2.ts index 767340ae6f213..47fd3383276dd 100644 --- a/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution2.ts +++ b/solution/0200-0299/0235.Lowest Common Ancestor of a Binary Search Tree/Solution2.ts @@ -17,7 +17,11 @@ function lowestCommonAncestor( p: TreeNode | null, q: TreeNode | null, ): TreeNode | null { - if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q); - if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q); + if (root.val > p.val && root.val > q.val) { + return lowestCommonAncestor(root.left, p, q); + } + if (root.val < p.val && root.val < q.val) { + return lowestCommonAncestor(root.right, p, q); + } return root; }