diff --git a/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/README.md b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/README.md
index 128bebe51d7b5..ab2116885424a 100644
--- a/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/README.md
+++ b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/README.md
@@ -26,7 +26,7 @@ tags:
输入: nums = [1,-1,5,-2,3]
, k = 3
-输出: 4
+输出: 4
解释: 子数组 [1, -1, 5, -2]
和等于 3,且长度最长。
@@ -55,13 +55,13 @@ tags:
### 方法一:哈希表 + 前缀和
-我们可以用一个哈希表 $d$ 记录数组 $nums$ 中每个前缀和第一次出现的下标,初始时 $d[0] = -1$。另外定义一个变量 $s$ 记录前缀和。
+我们可以用一个哈希表 $\textit{d}$ 记录数组 $\textit{nums}$ 中每个前缀和第一次出现的下标,初始时 $\textit{d}[0] = -1$。另外定义一个变量 $\textit{s}$ 记录前缀和。
-接下来,遍历数组 $nums$,对于当前遍历到的数字 $nums[i]$,我们更新前缀和 $s = s + nums[i]$,如果 $s-k$ 在哈希表 $d$ 中存在,不妨记 $j = d[s - k]$,那么以 $nums[i]$ 结尾的符合条件的子数组的长度为 $i - j$,我们使用一个变量 $ans$ 来维护最长的符合条件的子数组的长度。然后,如果 $s$ 在哈希表中不存在,我们记录 $s$ 和对应的下标 $i$,即 $d[s] = i$,否则我们不更新 $d[s]$。需要注意的是,可能会有多个位置 $i$ 都满足 $s$ 的值,因此我们只记录最小的 $i$,这样就能保证子数组的长度最长。
+接下来,遍历数组 $\textit{nums}$,对于当前遍历到的数字 $\textit{nums}[i]$,我们更新前缀和 $\textit{s} = \textit{s} + \textit{nums}[i]$,如果 $\textit{s}-k$ 在哈希表 $\textit{d}$ 中存在,不妨记 $j = \textit{d}[\textit{s} - k]$,那么以 $\textit{nums}[i]$ 结尾的符合条件的子数组的长度为 $i - j$,我们使用一个变量 $\textit{ans}$ 来维护最长的符合条件的子数组的长度。然后,如果 $\textit{s}$ 在哈希表中不存在,我们记录 $\textit{s}$ 和对应的下标 $i$,即 $\textit{d}[\textit{s}] = i$,否则我们不更新 $\textit{d}[\textit{s}]$。需要注意的是,可能会有多个位置 $i$ 都满足 $\textit{s}$ 的值,因此我们只记录最小的 $i$,这样就能保证子数组的长度最长。
-遍历结束之后,我们返回 $ans$ 即可。
+遍历结束之后,我们返回 $\textit{ans}$ 即可。
-时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。
+时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $\textit{nums}$ 的长度。
@@ -163,6 +163,80 @@ function maxSubArrayLen(nums: number[], k: number): number {
}
```
+#### Rust
+
+```rust
+use std::collections::HashMap;
+
+impl Solution {
+ pub fn max_sub_array_len(nums: Vec, k: i32) -> i32 {
+ let mut d = HashMap::new();
+ d.insert(0, -1);
+ let mut ans = 0;
+ let mut s = 0;
+
+ for (i, &x) in nums.iter().enumerate() {
+ s += x;
+ if let Some(&j) = d.get(&(s - k)) {
+ ans = ans.max((i as i32) - j);
+ }
+ d.entry(s).or_insert(i as i32);
+ }
+
+ ans
+ }
+}
+```
+
+#### JavaScript
+
+```js
+/**
+ * @param {number[]} nums
+ * @param {number} k
+ * @return {number}
+ */
+var maxSubArrayLen = function (nums, k) {
+ const d = new Map();
+ d.set(0, -1);
+ let ans = 0;
+ let s = 0;
+ for (let i = 0; i < nums.length; ++i) {
+ s += nums[i];
+ if (d.has(s - k)) {
+ ans = Math.max(ans, i - d.get(s - k));
+ }
+ if (!d.has(s)) {
+ d.set(s, i);
+ }
+ }
+ return ans;
+};
+```
+
+#### C#
+
+```cs
+public class Solution {
+ public int MaxSubArrayLen(int[] nums, int k) {
+ var d = new Dictionary();
+ d[0] = -1;
+ int ans = 0;
+ int s = 0;
+ for (int i = 0; i < nums.Length; i++) {
+ s += nums[i];
+ if (d.ContainsKey(s - k)) {
+ ans = Math.Max(ans, i - d[s - k]);
+ }
+ if (!d.ContainsKey(s)) {
+ d[s] = i;
+ }
+ }
+ return ans;
+ }
+}
+```
+
diff --git a/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/README_EN.md b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/README_EN.md
index faa73742e4b73..6c708b0a1b002 100644
--- a/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/README_EN.md
+++ b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/README_EN.md
@@ -52,7 +52,15 @@ tags:
-### Solution 1
+### Solution 1: Hash Table + Prefix Sum
+
+We can use a hash table $\textit{d}$ to record the first occurrence index of each prefix sum in the array $\textit{nums}$, initializing $\textit{d}[0] = -1$. Additionally, we define a variable $\textit{s}$ to keep track of the current prefix sum.
+
+Next, we iterate through the array $\textit{nums}$. For the current number $\textit{nums}[i]$, we update the prefix sum $\textit{s} = \textit{s} + \textit{nums}[i]$. If $\textit{s} - k$ exists in the hash table $\textit{d}$, let $\textit{j} = \textit{d}[\textit{s} - k]$, then the length of the subarray that ends at $\textit{nums}[i]$ and satisfies the condition is $i - j$. We use a variable $\textit{ans}$ to maintain the length of the longest subarray that satisfies the condition. After that, if $\textit{s}$ does not exist in the hash table, we record $\textit{s}$ and its corresponding index $i$ by setting $\textit{d}[\textit{s}] = i$. Otherwise, we do not update $\textit{d}[\textit{s}]$. It is important to note that there may be multiple positions $i$ with the same value of $\textit{s}$, so we only record the smallest $i$ to ensure the subarray length is the longest.
+
+After the iteration ends, we return $\textit{ans}$.
+
+The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $\textit{nums}$.
@@ -154,6 +162,80 @@ function maxSubArrayLen(nums: number[], k: number): number {
}
```
+#### Rust
+
+```rust
+use std::collections::HashMap;
+
+impl Solution {
+ pub fn max_sub_array_len(nums: Vec, k: i32) -> i32 {
+ let mut d = HashMap::new();
+ d.insert(0, -1);
+ let mut ans = 0;
+ let mut s = 0;
+
+ for (i, &x) in nums.iter().enumerate() {
+ s += x;
+ if let Some(&j) = d.get(&(s - k)) {
+ ans = ans.max((i as i32) - j);
+ }
+ d.entry(s).or_insert(i as i32);
+ }
+
+ ans
+ }
+}
+```
+
+#### JavaScript
+
+```js
+/**
+ * @param {number[]} nums
+ * @param {number} k
+ * @return {number}
+ */
+var maxSubArrayLen = function (nums, k) {
+ const d = new Map();
+ d.set(0, -1);
+ let ans = 0;
+ let s = 0;
+ for (let i = 0; i < nums.length; ++i) {
+ s += nums[i];
+ if (d.has(s - k)) {
+ ans = Math.max(ans, i - d.get(s - k));
+ }
+ if (!d.has(s)) {
+ d.set(s, i);
+ }
+ }
+ return ans;
+};
+```
+
+#### C#
+
+```cs
+public class Solution {
+ public int MaxSubArrayLen(int[] nums, int k) {
+ var d = new Dictionary();
+ d[0] = -1;
+ int ans = 0;
+ int s = 0;
+ for (int i = 0; i < nums.Length; i++) {
+ s += nums[i];
+ if (d.ContainsKey(s - k)) {
+ ans = Math.Max(ans, i - d[s - k]);
+ }
+ if (!d.ContainsKey(s)) {
+ d[s] = i;
+ }
+ }
+ return ans;
+ }
+}
+```
+
diff --git a/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.cs b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.cs
new file mode 100644
index 0000000000000..209eabe2162d3
--- /dev/null
+++ b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.cs
@@ -0,0 +1,18 @@
+public class Solution {
+ public int MaxSubArrayLen(int[] nums, int k) {
+ var d = new Dictionary();
+ d[0] = -1;
+ int ans = 0;
+ int s = 0;
+ for (int i = 0; i < nums.Length; i++) {
+ s += nums[i];
+ if (d.ContainsKey(s - k)) {
+ ans = Math.Max(ans, i - d[s - k]);
+ }
+ if (!d.ContainsKey(s)) {
+ d[s] = i;
+ }
+ }
+ return ans;
+ }
+}
diff --git a/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.js b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.js
new file mode 100644
index 0000000000000..dc542c5d2fa24
--- /dev/null
+++ b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.js
@@ -0,0 +1,21 @@
+/**
+ * @param {number[]} nums
+ * @param {number} k
+ * @return {number}
+ */
+var maxSubArrayLen = function (nums, k) {
+ const d = new Map();
+ d.set(0, -1);
+ let ans = 0;
+ let s = 0;
+ for (let i = 0; i < nums.length; ++i) {
+ s += nums[i];
+ if (d.has(s - k)) {
+ ans = Math.max(ans, i - d.get(s - k));
+ }
+ if (!d.has(s)) {
+ d.set(s, i);
+ }
+ }
+ return ans;
+};
diff --git a/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.rs b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.rs
new file mode 100644
index 0000000000000..e011cb1e1c458
--- /dev/null
+++ b/solution/0300-0399/0325.Maximum Size Subarray Sum Equals k/Solution.rs
@@ -0,0 +1,20 @@
+use std::collections::HashMap;
+
+impl Solution {
+ pub fn max_sub_array_len(nums: Vec, k: i32) -> i32 {
+ let mut d = HashMap::new();
+ d.insert(0, -1);
+ let mut ans = 0;
+ let mut s = 0;
+
+ for (i, &x) in nums.iter().enumerate() {
+ s += x;
+ if let Some(&j) = d.get(&(s - k)) {
+ ans = ans.max((i as i32) - j);
+ }
+ d.entry(s).or_insert(i as i32);
+ }
+
+ ans
+ }
+}