Skip to content

Commit 9af95ab

Browse files
committed
Update cookbook examples
1 parent 2798ebb commit 9af95ab

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

docs/code/MlNetCookBook.md

+9-9
Original file line numberDiff line numberDiff line change
@@ -303,8 +303,8 @@ var someRows = mlContext
303303
// This will give the entire dataset: make sure to only take several row
304304
// in case the dataset is huge. The is similar to the static API, except
305305
// you have to specify the column name and type.
306-
var featureColumns = transformedData.GetColumn<string[]>(mlContext, "AllFeatures")
307-
.Take(20).ToArray();
306+
var featureColumns = transformedData.GetColumn<string[]>(transformedData.Schema["AllFeatures"])
307+
308308
```
309309
## How do I train a regression model?
310310

@@ -637,7 +637,7 @@ var pipeline =
637637
var normalizedData = pipeline.Fit(trainData).Transform(trainData);
638638

639639
// Inspect one column of the resulting dataset.
640-
var meanVarValues = normalizedData.GetColumn<float[]>(mlContext, "MeanVarNormalized").ToArray();
640+
var meanVarValues = normalizedData.GetColumn<float[]>(normalizedData.Schema["MeanVarNormalized"]).ToArray();
641641
```
642642

643643
## How do I train my model on categorical data?
@@ -682,8 +682,8 @@ var loader = mlContext.Data.CreateTextLoader(new[]
682682
// Load the data.
683683
var data = loader.Load(dataPath);
684684

685-
// Inspect the first 10 records of the categorical columns to check that they are correctly load.
686-
var catColumns = data.GetColumn<string[]>(mlContext, "CategoricalFeatures").Take(10).ToArray();
685+
// Inspect the first 10 records of the categorical columns to check that they are correctly read.
686+
var catColumns = data.GetColumn<string[]>(data.Schema["CategoricalFeatures"]).Take(10).ToArray();
687687

688688
// Build several alternative featurization pipelines.
689689
var pipeline =
@@ -699,8 +699,8 @@ var pipeline =
699699
var transformedData = pipeline.Fit(data).Transform(data);
700700

701701
// Inspect some columns of the resulting dataset.
702-
var categoricalBags = transformedData.GetColumn<float[]>(mlContext, "CategoricalBag").Take(10).ToArray();
703-
var workclasses = transformedData.GetColumn<float[]>(mlContext, "WorkclassOneHotTrimmed").Take(10).ToArray();
702+
var categoricalBags = transformedData.GetColumn<float[]>(transformedData.Schema["CategoricalBag"]).Take(10).ToArray();
703+
var workclasses = transformedData.GetColumn<float[]>(transformedData.Schema["WorkclassOneHotTrimmed"]).Take(10).ToArray();
704704

705705
// Of course, if we want to train the model, we will need to compose a single float vector of all the features.
706706
// Here's how we could do this:
@@ -756,8 +756,8 @@ var loader = mlContext.Data.CreateTextLoader(new[]
756756
// Load the data.
757757
var data = loader.Load(dataPath);
758758

759-
// Inspect the message texts that are load from the file.
760-
var messageTexts = data.GetColumn<string>(mlContext, "Message").Take(20).ToArray();
759+
// Inspect the message texts that are read from the file.
760+
var messageTexts = data.GetColumn<string>(data.Schema["Message"]).Take(20).ToArray();
761761

762762
// Apply various kinds of text operations supported by ML.NET.
763763
var pipeline =

0 commit comments

Comments
 (0)