Skip to content

Commit 85ca47a

Browse files
authored
Merge pull request #8 from drift-labs/fix-userstats
Update volume page
2 parents b1eb7c5 + 02cdd86 commit 85ca47a

File tree

2 files changed

+65
-8
lines changed

2 files changed

+65
-8
lines changed

requirements.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
aiocache
22
anchorpy
33
ccxt
4-
driftpy>=0.8.15
4+
driftpy>=0.8.25
55
numpy
66
openai
77
pandas

tabs/userstats.py

+64-7
Original file line numberDiff line numberDiff line change
@@ -17,10 +17,19 @@ async def show_user_stats(clearing_house: DriftClient):
1717
ch = clearing_house
1818

1919
if "user_stats_df" not in st.session_state:
20+
start_time = time.time()
21+
22+
# Fetch user stats
23+
fetch_start = time.time()
2024
all_user_stats = await ch.program.account["UserStats"].all()
25+
fetch_end = time.time()
26+
fetch_duration = fetch_end - fetch_start
27+
2128
kp = Keypair()
2229
ch = DriftClient(ch.program, kp)
2330

31+
# Process data
32+
process_start = time.time()
2433
df_rr = pd.DataFrame([x.account.__dict__ for x in all_user_stats])
2534
fees_df = pd.DataFrame([x.account.fees.__dict__ for x in all_user_stats])
2635

@@ -98,11 +107,28 @@ async def show_user_stats(clearing_house: DriftClient):
98107
.sort_values("last_trade_seconds_ago")
99108
.reset_index(drop=True)
100109
)
110+
process_end = time.time()
111+
process_duration = process_end - process_start
112+
113+
total_duration = time.time() - start_time
101114

102115
st.session_state.user_stats_df = df
116+
st.session_state.timing_stats = {
117+
"fetch_time": fetch_duration,
118+
"process_time": process_duration,
119+
"total_time": total_duration,
120+
"record_count": len(df),
121+
}
103122

104123
df = st.session_state.user_stats_df
105124

125+
# Display timing stats
126+
if "timing_stats" in st.session_state:
127+
stats = st.session_state.timing_stats
128+
st.info(
129+
f"Data stats: {stats['record_count']} records | Fetch: {stats['fetch_time']:.2f}s | Process: {stats['process_time']:.2f}s | Total: {stats['total_time']:.2f}s"
130+
)
131+
106132
tab_names = ["Volume", "New Signups", "Refferals", "Fillers", "Clusters"]
107133
if "userstats_active_tab" not in st.session_state:
108134
st.session_state.userstats_active_tab = tab_names[0]
@@ -128,6 +154,13 @@ async def show_user_stats(clearing_house: DriftClient):
128154
def render_volume_tab(df):
129155
pie1, pie2 = st.columns(2)
130156

157+
_old_df = df
158+
159+
min_volume_value = st.number_input(
160+
"Minimum 30 day volume (dollars)", min_value=0, max_value=1000000, value=100
161+
)
162+
df = df[df["taker_volume30d_calc"] > min_volume_value]
163+
131164
net_vamm_maker_volume = (
132165
df["taker_volume30d_calc"].sum() - df["maker_volume30d_calc"].sum()
133166
)
@@ -198,11 +231,29 @@ def render_volume_tab(df):
198231
str(np.round(net_vamm_maker_volume / 1e6, 2)) + "M",
199232
)
200233

201-
st.dataframe(df)
202-
df2download2 = df.to_csv(escapechar='"').encode("utf-8")
203-
st.download_button(
204-
label="user stats full [bytes=" + str(len(df)) + "]",
205-
data=df2download2,
234+
sorted_df = df.sort_values("total_30d_volume_calc", ascending=False)
235+
236+
display_df = sorted_df
237+
238+
st.info(
239+
f"There are {len(display_df)} traders who traded ${min_volume_value:,} or more volume in the last 30 days"
240+
)
241+
st.dataframe(display_df)
242+
243+
col1, col2 = st.columns(2)
244+
245+
df2download_top = sorted_df.head(2000).to_csv(escapechar='"').encode("utf-8")
246+
col1.download_button(
247+
label=f"Download top 2000 traders [bytes={len(df2download_top)}]",
248+
data=df2download_top,
249+
file_name="userstats_top2000.csv",
250+
mime="text/csv",
251+
)
252+
253+
df2download_full = df.to_csv(escapechar='"').encode("utf-8")
254+
col2.download_button(
255+
label=f"Download all traders [bytes={len(df2download_full)}]",
256+
data=df2download_full,
206257
file_name="userstats_full.csv",
207258
mime="text/csv",
208259
)
@@ -399,7 +450,14 @@ def render_fillers_tab(df):
399450

400451

401452
def render_clusters_tab(df):
402-
st.write(df["total_fee_paid"].sum(), df["total_fee_rebate"].sum())
453+
numeric_df = df.select_dtypes(include=["number"])
454+
455+
st.markdown(f"Total fees paid: ${df['total_fee_paid'].sum():,.2f} ")
456+
st.markdown(f"Total fee rebates: ${df['total_fee_rebate'].sum():,.2f}")
457+
458+
st.write("Correlation matrix between numeric features:")
459+
st.write(numeric_df.corr())
460+
403461
dff = df[df["total_30d_volume_calc"] > 0].sort_values("total_30d_volume_calc")
404462
dd = dff[
405463
[
@@ -410,5 +468,4 @@ def render_clusters_tab(df):
410468
].pipe(np.sqrt)
411469
fig = dd.plot(kind="scatter")
412470

413-
st.write(df.corr())
414471
st.plotly_chart(fig)

0 commit comments

Comments
 (0)