@@ -17,10 +17,19 @@ async def show_user_stats(clearing_house: DriftClient):
17
17
ch = clearing_house
18
18
19
19
if "user_stats_df" not in st .session_state :
20
+ start_time = time .time ()
21
+
22
+ # Fetch user stats
23
+ fetch_start = time .time ()
20
24
all_user_stats = await ch .program .account ["UserStats" ].all ()
25
+ fetch_end = time .time ()
26
+ fetch_duration = fetch_end - fetch_start
27
+
21
28
kp = Keypair ()
22
29
ch = DriftClient (ch .program , kp )
23
30
31
+ # Process data
32
+ process_start = time .time ()
24
33
df_rr = pd .DataFrame ([x .account .__dict__ for x in all_user_stats ])
25
34
fees_df = pd .DataFrame ([x .account .fees .__dict__ for x in all_user_stats ])
26
35
@@ -98,11 +107,28 @@ async def show_user_stats(clearing_house: DriftClient):
98
107
.sort_values ("last_trade_seconds_ago" )
99
108
.reset_index (drop = True )
100
109
)
110
+ process_end = time .time ()
111
+ process_duration = process_end - process_start
112
+
113
+ total_duration = time .time () - start_time
101
114
102
115
st .session_state .user_stats_df = df
116
+ st .session_state .timing_stats = {
117
+ "fetch_time" : fetch_duration ,
118
+ "process_time" : process_duration ,
119
+ "total_time" : total_duration ,
120
+ "record_count" : len (df ),
121
+ }
103
122
104
123
df = st .session_state .user_stats_df
105
124
125
+ # Display timing stats
126
+ if "timing_stats" in st .session_state :
127
+ stats = st .session_state .timing_stats
128
+ st .info (
129
+ f"Data stats: { stats ['record_count' ]} records | Fetch: { stats ['fetch_time' ]:.2f} s | Process: { stats ['process_time' ]:.2f} s | Total: { stats ['total_time' ]:.2f} s"
130
+ )
131
+
106
132
tab_names = ["Volume" , "New Signups" , "Refferals" , "Fillers" , "Clusters" ]
107
133
if "userstats_active_tab" not in st .session_state :
108
134
st .session_state .userstats_active_tab = tab_names [0 ]
@@ -128,6 +154,13 @@ async def show_user_stats(clearing_house: DriftClient):
128
154
def render_volume_tab (df ):
129
155
pie1 , pie2 = st .columns (2 )
130
156
157
+ _old_df = df
158
+
159
+ min_volume_value = st .number_input (
160
+ "Minimum 30 day volume (dollars)" , min_value = 0 , max_value = 1000000 , value = 100
161
+ )
162
+ df = df [df ["taker_volume30d_calc" ] > min_volume_value ]
163
+
131
164
net_vamm_maker_volume = (
132
165
df ["taker_volume30d_calc" ].sum () - df ["maker_volume30d_calc" ].sum ()
133
166
)
@@ -198,11 +231,29 @@ def render_volume_tab(df):
198
231
str (np .round (net_vamm_maker_volume / 1e6 , 2 )) + "M" ,
199
232
)
200
233
201
- st .dataframe (df )
202
- df2download2 = df .to_csv (escapechar = '"' ).encode ("utf-8" )
203
- st .download_button (
204
- label = "user stats full [bytes=" + str (len (df )) + "]" ,
205
- data = df2download2 ,
234
+ sorted_df = df .sort_values ("total_30d_volume_calc" , ascending = False )
235
+
236
+ display_df = sorted_df
237
+
238
+ st .info (
239
+ f"There are { len (display_df )} traders who traded ${ min_volume_value :,} or more volume in the last 30 days"
240
+ )
241
+ st .dataframe (display_df )
242
+
243
+ col1 , col2 = st .columns (2 )
244
+
245
+ df2download_top = sorted_df .head (2000 ).to_csv (escapechar = '"' ).encode ("utf-8" )
246
+ col1 .download_button (
247
+ label = f"Download top 2000 traders [bytes={ len (df2download_top )} ]" ,
248
+ data = df2download_top ,
249
+ file_name = "userstats_top2000.csv" ,
250
+ mime = "text/csv" ,
251
+ )
252
+
253
+ df2download_full = df .to_csv (escapechar = '"' ).encode ("utf-8" )
254
+ col2 .download_button (
255
+ label = f"Download all traders [bytes={ len (df2download_full )} ]" ,
256
+ data = df2download_full ,
206
257
file_name = "userstats_full.csv" ,
207
258
mime = "text/csv" ,
208
259
)
@@ -399,7 +450,14 @@ def render_fillers_tab(df):
399
450
400
451
401
452
def render_clusters_tab (df ):
402
- st .write (df ["total_fee_paid" ].sum (), df ["total_fee_rebate" ].sum ())
453
+ numeric_df = df .select_dtypes (include = ["number" ])
454
+
455
+ st .markdown (f"Total fees paid: ${ df ['total_fee_paid' ].sum ():,.2f} " )
456
+ st .markdown (f"Total fee rebates: ${ df ['total_fee_rebate' ].sum ():,.2f} " )
457
+
458
+ st .write ("Correlation matrix between numeric features:" )
459
+ st .write (numeric_df .corr ())
460
+
403
461
dff = df [df ["total_30d_volume_calc" ] > 0 ].sort_values ("total_30d_volume_calc" )
404
462
dd = dff [
405
463
[
@@ -410,5 +468,4 @@ def render_clusters_tab(df):
410
468
].pipe (np .sqrt )
411
469
fig = dd .plot (kind = "scatter" )
412
470
413
- st .write (df .corr ())
414
471
st .plotly_chart (fig )
0 commit comments