forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_bytecode.py
374 lines (325 loc) · 14.3 KB
/
test_bytecode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Owner(s): ["oncall: mobile"]
import fnmatch
import io
import shutil
import tempfile
from pathlib import Path
import torch
import torch.utils.show_pickle
# from torch.utils.mobile_optimizer import optimize_for_mobile
from torch.jit.mobile import (
_backport_for_mobile,
_backport_for_mobile_to_buffer,
_get_mobile_model_contained_types,
_get_model_bytecode_version,
_get_model_ops_and_info,
_load_for_lite_interpreter,
)
from torch.testing._internal.common_utils import run_tests, TestCase
pytorch_test_dir = Path(__file__).resolve().parents[1]
# script_module_v4.ptl and script_module_v5.ptl source code
# class TestModule(torch.nn.Module):
# def __init__(self, v):
# super().__init__()
# self.x = v
# def forward(self, y: int):
# increment = torch.ones([2, 4], dtype=torch.float64)
# return self.x + y + increment
# output_model_path = Path(tmpdirname, "script_module_v5.ptl")
# script_module = torch.jit.script(TestModule(1))
# optimized_scripted_module = optimize_for_mobile(script_module)
# exported_optimized_scripted_module = optimized_scripted_module._save_for_lite_interpreter(
# str(output_model_path))
SCRIPT_MODULE_V4_BYTECODE_PKL = """
(4,
('__torch__.*.TestModule.forward',
(('instructions',
(('STOREN', 1, 2),
('DROPR', 1, 0),
('LOADC', 0, 0),
('LOADC', 1, 0),
('MOVE', 2, 0),
('OP', 0, 0),
('LOADC', 1, 0),
('OP', 1, 0),
('RET', 0, 0))),
('operators', (('aten::add', 'int'), ('aten::add', 'Scalar'))),
('constants',
(torch._utils._rebuild_tensor_v2(pers.obj(('storage', torch.DoubleStorage, '0', 'cpu', 8),),
0,
(2, 4),
(4, 1),
False,
collections.OrderedDict()),
1)),
('types', ()),
('register_size', 2)),
(('arguments',
((('name', 'self'),
('type', '__torch__.*.TestModule'),
('default_value', None)),
(('name', 'y'), ('type', 'int'), ('default_value', None)))),
('returns',
((('name', ''), ('type', 'Tensor'), ('default_value', None)),)))))
"""
SCRIPT_MODULE_V5_BYTECODE_PKL = """
(5,
('__torch__.*.TestModule.forward',
(('instructions',
(('STOREN', 1, 2),
('DROPR', 1, 0),
('LOADC', 0, 0),
('LOADC', 1, 0),
('MOVE', 2, 0),
('OP', 0, 0),
('LOADC', 1, 0),
('OP', 1, 0),
('RET', 0, 0))),
('operators', (('aten::add', 'int'), ('aten::add', 'Scalar'))),
('constants',
(torch._utils._rebuild_tensor_v2(pers.obj(('storage', torch.DoubleStorage, 'constants/0', 'cpu', 8),),
0,
(2, 4),
(4, 1),
False,
collections.OrderedDict()),
1)),
('types', ()),
('register_size', 2)),
(('arguments',
((('name', 'self'),
('type', '__torch__.*.TestModule'),
('default_value', None)),
(('name', 'y'), ('type', 'int'), ('default_value', None)))),
('returns',
((('name', ''), ('type', 'Tensor'), ('default_value', None)),)))))
"""
SCRIPT_MODULE_V6_BYTECODE_PKL = """
(6,
('__torch__.*.TestModule.forward',
(('instructions',
(('STOREN', 1, 2),
('DROPR', 1, 0),
('LOADC', 0, 0),
('LOADC', 1, 0),
('MOVE', 2, 0),
('OP', 0, 0),
('OP', 1, 0),
('RET', 0, 0))),
('operators', (('aten::add', 'int', 2), ('aten::add', 'Scalar', 2))),
('constants',
(torch._utils._rebuild_tensor_v2(pers.obj(('storage', torch.DoubleStorage, '0', 'cpu', 8),),
0,
(2, 4),
(4, 1),
False,
collections.OrderedDict()),
1)),
('types', ()),
('register_size', 2)),
(('arguments',
((('name', 'self'),
('type', '__torch__.*.TestModule'),
('default_value', None)),
(('name', 'y'), ('type', 'int'), ('default_value', None)))),
('returns',
((('name', ''), ('type', 'Tensor'), ('default_value', None)),)))))
"""
SCRIPT_MODULE_BYTECODE_PKL = {
4: {
"bytecode_pkl": SCRIPT_MODULE_V4_BYTECODE_PKL,
"model_name": "script_module_v4.ptl",
},
}
# The minimum version a model can be backported to
# Need to be updated when a bytecode version is completely retired
MINIMUM_TO_VERSION = 4
class testVariousModelVersions(TestCase):
def test_get_model_bytecode_version(self):
def check_model_version(model_path, expect_version):
actual_version = _get_model_bytecode_version(model_path)
assert actual_version == expect_version
for version, model_info in SCRIPT_MODULE_BYTECODE_PKL.items():
model_path = pytorch_test_dir / "cpp" / "jit" / model_info["model_name"]
check_model_version(model_path, version)
def test_bytecode_values_for_all_backport_functions(self):
# Find the maximum version of the checked in models, start backporting to the minimum support version,
# and comparing the bytecode pkl content.
# It can't be merged to the test `test_all_backport_functions`, because optimization is dynamic and
# the content might change when optimize function changes. This test focuses
# on bytecode.pkl content validation. For the content validation, it is not byte to byte check, but
# regular expression matching. The wildcard can be used to skip some specific content comparison.
maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys())
current_from_version = maximum_checked_in_model_version
with tempfile.TemporaryDirectory() as tmpdirname:
while current_from_version > MINIMUM_TO_VERSION:
# Load model v5 and run forward method
model_name = SCRIPT_MODULE_BYTECODE_PKL[current_from_version][
"model_name"
]
input_model_path = pytorch_test_dir / "cpp" / "jit" / model_name
# A temporary model file will be export to this path, and run through bytecode.pkl
# content check.
tmp_output_model_path_backport = Path(
tmpdirname, "tmp_script_module_backport.ptl"
)
current_to_version = current_from_version - 1
backport_success = _backport_for_mobile(
input_model_path, tmp_output_model_path_backport, current_to_version
)
assert backport_success
expect_bytecode_pkl = SCRIPT_MODULE_BYTECODE_PKL[current_to_version][
"bytecode_pkl"
]
buf = io.StringIO()
torch.utils.show_pickle.main(
[
"",
tmpdirname
+ "/"
+ tmp_output_model_path_backport.name
+ "@*/bytecode.pkl",
],
output_stream=buf,
)
output = buf.getvalue()
acutal_result_clean = "".join(output.split())
expect_result_clean = "".join(expect_bytecode_pkl.split())
isMatch = fnmatch.fnmatch(acutal_result_clean, expect_result_clean)
assert isMatch
current_from_version -= 1
shutil.rmtree(tmpdirname)
# Please run this test manually when working on backport.
# This test passes in OSS, but fails internally, likely due to missing step in build
# def test_all_backport_functions(self):
# # Backport from the latest bytecode version to the minimum support version
# # Load, run the backport model, and check version
# class TestModule(torch.nn.Module):
# def __init__(self, v):
# super().__init__()
# self.x = v
# def forward(self, y: int):
# increment = torch.ones([2, 4], dtype=torch.float64)
# return self.x + y + increment
# module_input = 1
# expected_mobile_module_result = 3 * torch.ones([2, 4], dtype=torch.float64)
# # temporary input model file and output model file will be exported in the temporary folder
# with tempfile.TemporaryDirectory() as tmpdirname:
# tmp_input_model_path = Path(tmpdirname, "tmp_script_module.ptl")
# script_module = torch.jit.script(TestModule(1))
# optimized_scripted_module = optimize_for_mobile(script_module)
# exported_optimized_scripted_module = optimized_scripted_module._save_for_lite_interpreter(str(tmp_input_model_path))
# current_from_version = _get_model_bytecode_version(tmp_input_model_path)
# current_to_version = current_from_version - 1
# tmp_output_model_path = Path(tmpdirname, "tmp_script_module_backport.ptl")
# while current_to_version >= MINIMUM_TO_VERSION:
# # Backport the latest model to `to_version` to a tmp file "tmp_script_module_backport"
# backport_success = _backport_for_mobile(tmp_input_model_path, tmp_output_model_path, current_to_version)
# assert(backport_success)
# backport_version = _get_model_bytecode_version(tmp_output_model_path)
# assert(backport_version == current_to_version)
# # Load model and run forward method
# mobile_module = _load_for_lite_interpreter(str(tmp_input_model_path))
# mobile_module_result = mobile_module(module_input)
# torch.testing.assert_close(mobile_module_result, expected_mobile_module_result)
# current_to_version -= 1
# # Check backport failure case
# backport_success = _backport_for_mobile(tmp_input_model_path, tmp_output_model_path, MINIMUM_TO_VERSION - 1)
# assert(not backport_success)
# # need to clean the folder before it closes, otherwise will run into git not clean error
# shutil.rmtree(tmpdirname)
# Check just the test_backport_bytecode_from_file_to_file mechanism but not the function implementations
def test_backport_bytecode_from_file_to_file(self):
maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys())
script_module_v5_path = (
pytorch_test_dir
/ "cpp"
/ "jit"
/ SCRIPT_MODULE_BYTECODE_PKL[maximum_checked_in_model_version]["model_name"]
)
if maximum_checked_in_model_version > MINIMUM_TO_VERSION:
with tempfile.TemporaryDirectory() as tmpdirname:
tmp_backport_model_path = Path(
tmpdirname, "tmp_script_module_v5_backported_to_v4.ptl"
)
# backport from file
success = _backport_for_mobile(
script_module_v5_path,
tmp_backport_model_path,
maximum_checked_in_model_version - 1,
)
assert success
buf = io.StringIO()
torch.utils.show_pickle.main(
[
"",
tmpdirname
+ "/"
+ tmp_backport_model_path.name
+ "@*/bytecode.pkl",
],
output_stream=buf,
)
output = buf.getvalue()
expected_result = SCRIPT_MODULE_V4_BYTECODE_PKL
acutal_result_clean = "".join(output.split())
expect_result_clean = "".join(expected_result.split())
isMatch = fnmatch.fnmatch(acutal_result_clean, expect_result_clean)
assert isMatch
# Load model v4 and run forward method
mobile_module = _load_for_lite_interpreter(str(tmp_backport_model_path))
module_input = 1
mobile_module_result = mobile_module(module_input)
expected_mobile_module_result = 3 * torch.ones(
[2, 4], dtype=torch.float64
)
torch.testing.assert_close(
mobile_module_result, expected_mobile_module_result
)
shutil.rmtree(tmpdirname)
# Check just the _backport_for_mobile_to_buffer mechanism but not the function implementations
def test_backport_bytecode_from_file_to_buffer(self):
maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys())
script_module_v5_path = (
pytorch_test_dir
/ "cpp"
/ "jit"
/ SCRIPT_MODULE_BYTECODE_PKL[maximum_checked_in_model_version]["model_name"]
)
if maximum_checked_in_model_version > MINIMUM_TO_VERSION:
# Backport model to v4
script_module_v4_buffer = _backport_for_mobile_to_buffer(
script_module_v5_path, maximum_checked_in_model_version - 1
)
# Check version of the model v4 from backport
bytesio = io.BytesIO(script_module_v4_buffer)
backport_version = _get_model_bytecode_version(bytesio)
assert backport_version == maximum_checked_in_model_version - 1
# Load model v4 from backport and run forward method
bytesio = io.BytesIO(script_module_v4_buffer)
mobile_module = _load_for_lite_interpreter(bytesio)
module_input = 1
mobile_module_result = mobile_module(module_input)
expected_mobile_module_result = 3 * torch.ones([2, 4], dtype=torch.float64)
torch.testing.assert_close(
mobile_module_result, expected_mobile_module_result
)
def test_get_model_ops_and_info(self):
# TODO update this to be more in the style of the above tests after a backport from 6 -> 5 exists
script_module_v6 = pytorch_test_dir / "cpp" / "jit" / "script_module_v6.ptl"
ops_v6 = _get_model_ops_and_info(script_module_v6)
assert ops_v6["aten::add.int"].num_schema_args == 2
assert ops_v6["aten::add.Scalar"].num_schema_args == 2
def test_get_mobile_model_contained_types(self):
class MyTestModule(torch.nn.Module):
def forward(self, x):
return x + 10
sample_input = torch.tensor([1])
script_module = torch.jit.script(MyTestModule())
script_module(sample_input)
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
buffer.seek(0)
type_list = _get_mobile_model_contained_types(buffer)
assert len(type_list) >= 0
if __name__ == "__main__":
run_tests()