forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_modules.py
1007 lines (853 loc) · 50.4 KB
/
test_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: nn"]
from itertools import chain, product
from inspect import signature, isgenerator
from copy import deepcopy
import tempfile
from operator import methodcaller
import torch
from torch._subclasses.meta_utils import assert_metadata_eq
from torch.testing._internal.common_cuda import with_tf32_off
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests, onlyCPU, onlyCUDA, toleranceOverride, tol, skipMeta)
from torch.testing._internal.common_modules import module_db, modules, ModuleErrorEnum, TrainEvalMode
from torch.testing._internal.common_utils import (
TestCase, run_tests, freeze_rng_state, mock_wrapper, get_tensors_from, gradcheck,
gradgradcheck, parametrize, wrapSwapTensorsTest)
from unittest.mock import patch, call
class TestModule(TestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
precision = 1e-5
rel_tol = 1e-5
def _assert_module_parameters_and_buffer_are(self, module, device, dtype):
# Check device placement and dtype for created parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg or methods
# such as `float()` applies to.
if not isinstance(device, torch.device):
device = torch.device(device)
def _check_module(items, name, device=device, dtype=dtype):
for item_name, item in items:
self.assertEqual(
item.device, device,
f'{name} {item_name} is on device {item.device} instead of the expected device {device}')
if item.dtype.is_floating_point:
self.assertEqual(
item.dtype, dtype,
f'{name} {item_name} is of dtype {item.dtype} instead of the expected dtype {dtype}')
_check_module(module.named_parameters(), "Parameter")
_check_module(module.named_buffers(), "Buffer")
@modules(module_db)
def test_forward(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
dtype_to_method_caller = {
torch.float32: methodcaller("float"),
torch.float64: methodcaller("double"),
}
for module_input in module_inputs:
if module_input.forward_input is None:
continue
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
outputs = m(*args, **kwargs)
# === Compare outputs to a reference if one is specified. ===
# TODO: Handle precision
reference_fn = module_input.reference_fn
if reference_fn is not None:
ref_outputs = reference_fn(m, *args, **kwargs)
self.assertEqual(outputs, ref_outputs)
# === Use the method call and verify the parameters and buffers ===
if dtype in dtype_to_method_caller:
dtype_to_method_caller[dtype](m)
m(*args, **kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
# Tests passing factory kwargs (e.g. device / dtype) during module instantiation.
# They should be applied to any created parameters and buffers.
@modules(module_db)
def test_factory_kwargs(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
# Check if this module creates parameters or registers buffers.
# The mock magic here passes through to the real Parameter / register_buffer
# logic and is only used to check call inputs.
module_creates_params_or_buffers = False
parameter_new = mock_wrapper(torch.nn.Parameter.__new__)
with patch.object(torch.nn.Parameter, '__new__', parameter_new):
register_buffer = mock_wrapper(torch.nn.Module.register_buffer)
with patch.object(torch.nn.Module, 'register_buffer', register_buffer):
m = module_cls(*args, **kwargs)
m.train(training)
# Check if a parameter or buffer was created with a tensor not passed to the constructor.
constructor_tensors = get_tensors_from(args, kwargs)
for mock in [parameter_new.mock, register_buffer.mock]:
for call_args, call_kwargs in mock.call_args_list:
call_tensors = get_tensors_from(call_args, call_kwargs)
if len(call_tensors) > 0 and not constructor_tensors.intersection(call_tensors):
module_creates_params_or_buffers = True
break
if not module_creates_params_or_buffers:
continue
# Instantiate module with the factory kwargs.
kwargs.update({
'device': device,
'dtype': dtype,
})
if issubclass(module_info.module_cls, torch.nn.modules.lazy.LazyModuleMixin):
# Ensure device and dtype are passed to all UninitializedParameters and UninitializedBuffers.
uninit_param_new = mock_wrapper(torch.nn.UninitializedParameter.__new__)
with patch.object(torch.nn.UninitializedParameter, '__new__', uninit_param_new):
uninit_buffer_new = mock_wrapper(torch.nn.UninitializedBuffer.__new__)
with patch.object(torch.nn.UninitializedBuffer, '__new__', uninit_buffer_new):
m = module_cls(*args, **kwargs)
m.train(training)
uninit_param_new.mock.assert_has_calls(
[call(device=device, dtype=dtype) for _ in uninit_param_new.mock.mock_calls])
uninit_buffer_new.mock.assert_has_calls(
[call(device=device, dtype=dtype) for _ in uninit_buffer_new.mock.mock_calls])
else:
# Check device placement and dtype for created parameters and buffers.
# Only verify floating point dtypes since that's what the kwarg applies to.
m = module_cls(*args, **kwargs)
m.train(training)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
@onlyCUDA
@modules(module_db)
def test_multiple_device_transfer(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs_device = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
module_inputs_cpu = module_info.module_inputs_func(module_info, device="cpu", dtype=dtype,
requires_grad=False, training=training)
for module_input_device, module_input_cpu in zip(module_inputs_device, module_inputs_cpu):
if module_input_device.forward_input is None:
continue
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input_device.constructor_input.args, module_input_device.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Do forward pass on GPU ===
input_device_args = module_input_device.forward_input.args
input_device_kwargs = module_input_device.forward_input.kwargs
m(*input_device_args, **input_device_kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
# === Move to CPU ===
input_cpu_args = module_input_cpu.forward_input.args
input_cpu_kwargs = module_input_cpu.forward_input.kwargs
m.cpu()
m(*input_cpu_args, **input_cpu_kwargs)
self._assert_module_parameters_and_buffer_are(m, "cpu", dtype)
# === Move back to GPU and forward pass ===
m.cuda()
m(*input_device_args, **input_device_kwargs)
self._assert_module_parameters_and_buffer_are(m, device, dtype)
if torch.cuda.device_count() >= 2:
# === test cross-GPU transfer works
def _to_device1(objs):
if isinstance(objs, (tuple, list)):
return type(objs)(_to_device1(item) for item in objs)
elif isinstance(objs, dict):
return {name: _to_device1(item) for name, item in objs.items()}
elif isinstance(objs, torch.Tensor):
return objs.cuda(1)
else:
return objs
input_device_1_args = _to_device1(input_device_args)
input_device_1_kwargs = _to_device1(input_device_kwargs)
m.cuda(1)
with torch.cuda.device(1):
m(*input_device_1_args, **input_device_1_kwargs)
self._assert_module_parameters_and_buffer_are(m, torch.device("cuda:1"), dtype)
@modules(module_db)
def test_repr(self, device, dtype, module_info, training):
# Test module can be represented with repr and str without errors.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# Check that these methods do not raise errors
m.__repr__()
str(m)
@modules(module_db)
def test_save_load(self, device, dtype, module_info, training):
# Test that module can be pickled and unpickled.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
sd = m.state_dict()
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
output = m(*args, **kwargs)
# === Check saved/loaded module gives the same output. ===
with tempfile.TemporaryFile() as f:
torch.save(m, f)
f.seek(0)
# weights_only=False as this is legacy code that saves the model
m_copy = torch.load(f, weights_only=False)
output_from_copy = m_copy(*args, **kwargs)
self.assertEqual(output, output_from_copy)
# === Check saved/loaded state_dict are the same (including weights_only load). ===
with tempfile.TemporaryFile() as f:
torch.save(sd, f)
f.seek(0)
sd_copy = torch.load(f)
self.assertEqual(sd_copy, sd)
del sd_copy
f.seek(0)
sd_copy_wo = torch.load(f, weights_only=True)
self.assertEqual(sd_copy_wo, sd)
@skipMeta
@modules([module_info for module_info in module_db
if 'inplace' in signature(module_info.module_cls).parameters])
def test_check_inplace(self, device, dtype, module_info, training):
# Check if the inplace variant of the module gives the same result as the out of place
# variant.
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m_op = module_cls(*args, **kwargs, inplace=False)
m_op.to(device).to(dtype)
m_op.train(training)
m_inplace = module_cls(*args, **kwargs, inplace=True)
m_inplace.to(device).to(dtype)
m_inplace.train(training)
# === Inplace modules only supports inplace operations on the first argument ===
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
# === Do not allow the first input to be in input_kwargs ===
forward_sig = signature(m_op).parameters
self.assertGreaterEqual(len(forward_sig), 1)
first_param_name = next(iter(forward_sig.items()))
self.assertNotIn(first_param_name, input_kwargs)
# === Out of place operation does not write to original tensor ===
self.assertGreaterEqual(len(input_args), 1)
input_version = input_args[0]._version
with freeze_rng_state():
output_op = m_op(*input_args, **input_kwargs)
self.assertEqual(input_args[0]._version, input_version)
# === Check that the inplace operation gives the same result ===
input_arg_copy = deepcopy(input_args)
input_arg_clone = tuple(i.clone() for i in input_arg_copy)
input_clone_version = input_arg_clone[0]._version
with freeze_rng_state():
output_ip = m_inplace(*input_arg_clone, **input_kwargs)
self.assertGreater(input_arg_clone[0]._version, input_clone_version)
self.assertEqual(output_op, output_ip)
# === Check that the gradients are the same ===
grad = output_op.data.clone().normal_()
output_op.backward(grad)
output_ip.backward(grad)
self.assertEqual(input_args[0].grad, input_arg_copy[0].grad)
def _traverse_obj(self, obj, func):
if isinstance(obj, (tuple, list)):
return type(obj)(self._traverse_obj(o, func) for o in obj)
elif isgenerator(obj):
return tuple(self._traverse_obj(o, func) for o in obj)
elif isinstance(obj, dict):
return {name: self._traverse_obj(o, func) for name, o in obj.items()}
elif isinstance(obj, (torch.Tensor, torch.nn.Parameter)):
return func(obj)
else:
return obj
def _retain_grad(self, obj):
# gradients needs to be retained to check for grad. This is useful when
# non-leafs are present in the graph.
def inner_retain_grad(obj):
if obj.requires_grad:
obj.retain_grad()
self._traverse_obj(obj, inner_retain_grad)
def _get_grads(self, obj):
def inner_get_grad(obj):
if obj.requires_grad:
return obj.grad
return self._traverse_obj(obj, inner_get_grad)
def _zero_grad(self, obj):
def inner_zero_grad(obj):
if obj.grad is not None:
obj.grad = None
self._traverse_obj(obj, inner_zero_grad)
@modules(module_db)
def test_non_contiguous_tensors(self, device, dtype, module_info, training):
# Check modules work with non-contiguous tensors
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
def _make_non_contiguous(obj):
def inner_make_non_contiguous(obj):
# Scalar tensors can not be made non-contiguous
if not isinstance(obj, torch.Tensor) or obj.dim() == 0:
return obj
out = torch.repeat_interleave(obj, 2, dim=-1)
out = out[..., ::2].detach()
out.requires_grad = obj.requires_grad
return out
return self._traverse_obj(obj, inner_make_non_contiguous)
def _can_be_noncontiguous(obj):
if isinstance(obj, (tuple, list)):
return any(_can_be_noncontiguous(o) for o in obj)
elif isinstance(obj, dict):
return any(_can_be_noncontiguous(o) for o in obj.values())
# scalar tensors can not be non-contiguous
return isinstance(obj, torch.Tensor) and obj.dim() != 0
for module_input in module_inputs:
if module_input.forward_input is None:
continue
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
if not (_can_be_noncontiguous(input_args) or _can_be_noncontiguous(input_kwargs)):
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
self._retain_grad((input_args, input_kwargs))
# === Forward with default input
with freeze_rng_state():
default_output = m(*input_args, **input_kwargs)
if isinstance(default_output, torch.Tensor):
grad_output = default_output.clone().detach_().normal_()
default_output.backward(grad_output, retain_graph=True)
else:
grad_output = tuple(self._traverse_obj(o, lambda o: o.clone().detach_().normal_() if o.requires_grad else None)
for o in default_output)
flattened_default_output = torch.utils._pytree.tree_leaves(default_output)
flattened_grad_output = torch.utils._pytree.tree_leaves(grad_output)
for o, g_o in zip(flattened_default_output, flattened_grad_output):
if (o.requires_grad):
o.backward(g_o, retain_graph=True)
default_input_args_grad, default_input_kwargs_grad = deepcopy(self._get_grads((input_args, input_kwargs)))
default_param_grad = deepcopy([p.grad for p in m.parameters()])
# === Construct non-contiguous tensors ===
nc_input_args, nc_input_kwargs = _make_non_contiguous((input_args, input_kwargs))
nc_grad_output = _make_non_contiguous(grad_output)
# === Compare results with non-contiguous and contiguous tensors ===
inputs = [(input_args, input_kwargs), (nc_input_args, nc_input_kwargs)]
grads = [grad_output, nc_grad_output]
for (in_args, in_kwargs), g_out in product(inputs, grads):
g_out_copy = deepcopy(g_out)
self._zero_grad((in_args, in_kwargs))
self._zero_grad(m.parameters())
with freeze_rng_state():
out = m(*in_args, **in_kwargs)
if isinstance(out, torch.Tensor):
out.backward(g_out_copy, retain_graph=True)
else:
flattened_out = torch.utils._pytree.tree_leaves(out)
flattened_g_out_copy = torch.utils._pytree.tree_leaves(g_out_copy)
for o, g_o in zip(flattened_out, flattened_g_out_copy):
if o.requires_grad:
o.backward(g_o, retain_graph=True)
input_args_grad, input_kwargs_grad = self._get_grads((in_args, in_kwargs))
self.assertEqual(out, default_output)
self.assertEqual(input_args_grad, default_input_args_grad, atol=1e-4, rtol=0)
self.assertEqual(input_kwargs_grad, default_input_kwargs_grad, atol=1e-4, rtol=0)
param_grad = [p.grad for p in m.parameters()]
self.assertEqual(param_grad, default_param_grad)
def _test_gradients_helper(self, device, dtype, module_info, training, check):
# Check gradients
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
# === Set nondet tol for gradcheck to user-defined value if on CUDA and cudNN is enabled
gradcheck_nondet_tol = 0.0
if (torch.device(device).type == 'cuda' and torch.backends.cudnn.enabled):
gradcheck_nondet_tol = module_info.gradcheck_nondet_tol
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
params = tuple(m.parameters())
# === Lazy modules need to see an input to initialize params before gradcheck is run. ===
input_args, input_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
if issubclass(module_info.module_cls, torch.nn.modules.lazy.LazyModuleMixin):
with torch.no_grad():
m(*input_args, **input_kwargs)
# === Perform gradient check on the input_args ===
other_kwargs = {}
kwarg_tensors = []
for name, obj in input_kwargs.items():
if isinstance(obj, torch.Tensor):
kwarg_tensors.append((name, obj))
else:
other_kwargs[name] = obj
def fn_to_gradcheck(*flat_input_and_params):
input_and_params = torch.utils._pytree.tree_unflatten(flat_input_and_params, flat_spec)
new_input_args = input_and_params[:len(input_args)]
kwarg_args = input_and_params[-len(kwarg_tensors):]
new_kwargs = {name: obj for (name, _), obj in zip(kwarg_tensors, kwarg_args)}
with freeze_rng_state():
output = m(*new_input_args, **new_kwargs, **other_kwargs)
output_flattened = torch.utils._pytree.tree_leaves(output)
return output_flattened
def do_check(flat_input):
self.assertTrue(
check(
fn_to_gradcheck,
flat_input,
nondet_tol=gradcheck_nondet_tol,
fast_mode=module_info.gradcheck_fast_mode
))
# check total derivative
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
do_check(flat_input)
# check partial derivatives
old_params_requires_grad = [p.requires_grad for p in params]
for p in params:
p.requires_grad = False
old_kwargs_requires_grad = [obj.requires_grad for (_, obj) in kwarg_tensors]
for (_, obj) in kwarg_tensors:
obj.requires_grad = False
for p, old in zip(params, old_params_requires_grad):
p.requires_grad = old
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
do_check(flat_input)
p.requires_grad = False
for (_, obj), old in zip(kwarg_tensors, old_kwargs_requires_grad):
obj.requires_grad = old
grad_input = input_args + params + tuple(obj for (_, obj) in kwarg_tensors)
flat_input, flat_spec = torch.utils._pytree.tree_flatten(grad_input)
do_check(flat_input)
obj.requires_grad = False
@modules(module_db, allowed_dtypes=[torch.double])
def test_grad(self, device, dtype, module_info, training):
self._test_gradients_helper(device, dtype, module_info, training, gradcheck)
@modules([m for m in module_db if m.supports_gradgrad],
allowed_dtypes=[torch.double])
def test_gradgrad(self, device, dtype, module_info, training):
self._test_gradients_helper(device, dtype, module_info, training, gradgradcheck)
@onlyCUDA
@with_tf32_off # Turn off TF32 to compute at full precision https://github.com/pytorch/pytorch/issues/86798
@toleranceOverride({torch.float32: tol(5e-2, 0),
torch.float64: tol(4e-4, 0)})
@modules(module_db)
def test_cpu_gpu_parity(self, device, dtype, module_info, training):
# TODO: RNN / GRU / LSTM don't support backwards on eval mode for cuDNN; skip this in a
# nicer way for eval mode only.
# See https://github.com/pytorch/pytorch/issues/79161
rnn_modules = {torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM}
if (module_info.module_cls in rnn_modules
and not training
and 'cuda' in device
and torch.backends.cudnn.enabled):
return
# Test cpu and gpu results are the same
module_cls = module_info.module_cls
module_inputs_cpu = module_info.module_inputs_func(module_info, device="cpu", dtype=dtype,
requires_grad=True, training=training)
def _to_device(obj):
if isinstance(obj, torch.Tensor):
res = obj.detach().to(device=device)
res.requires_grad = obj.requires_grad
return res
elif isinstance(obj, tuple):
return tuple(_to_device(o) for o in obj)
elif isinstance(obj, dict):
return {key: _to_device(o) for key, o in obj.items()}
else:
return deepcopy(obj)
for module_input in module_inputs_cpu:
# === Move input from cpu to device ===
cpu_forward_args = module_input.forward_input.args
cpu_forward_kwargs = module_input.forward_input.kwargs
gpu_forward_args, gpu_forward_kwargs = _to_device((cpu_forward_args, cpu_forward_kwargs))
self._retain_grad((cpu_forward_args, cpu_forward_kwargs, gpu_forward_args, gpu_forward_kwargs))
# === Construct module on cpu and gpu ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
cpu_module = module_cls(*args, **kwargs).to(dtype).to("cpu")
cpu_module.train(training)
gpu_module = module_cls(*args, **kwargs).to(dtype).to(device)
gpu_module.train(training)
# === Lazy modules need to see an input to initialize params ===
if issubclass(module_cls, torch.nn.modules.lazy.LazyModuleMixin):
with torch.no_grad():
cpu_module(*cpu_forward_args, **cpu_forward_kwargs)
gpu_module(*gpu_forward_args, **gpu_forward_kwargs)
for cpu_p, gpu_p in zip(cpu_module.parameters(), gpu_module.parameters()):
gpu_p.data.copy_(cpu_p)
# === Compare forward output between cpu and gpu ===
cpu_outputs = cpu_module(*cpu_forward_args, **cpu_forward_kwargs)
gpu_outputs = gpu_module(*gpu_forward_args, **gpu_forward_kwargs)
self.assertEqual(cpu_outputs, gpu_outputs)
# === Run backwards on CPU and GPU and compare results ===
def check_backward(cpu_output, gpu_output):
cpu_grad_output = cpu_output.clone().normal_()
gpu_grad_output = cpu_grad_output.type_as(gpu_output)
cpu_output.backward(cpu_grad_output, retain_graph=True)
gpu_output.backward(gpu_grad_output, retain_graph=True)
cpu_grad_input = self._get_grads(cpu_forward_args)
gpu_grad_input = self._get_grads(gpu_forward_args)
self.assertEqual(cpu_grad_input, gpu_grad_input)
for cpu_p, gpu_p in zip(cpu_module.parameters(), gpu_module.parameters()):
self.assertEqual(cpu_p.grad, gpu_p.grad)
cpu_grad_kwarg_input = self._get_grads(cpu_forward_kwargs)
gpu_grad_kwarg_input = self._get_grads(gpu_forward_kwargs)
self.assertEqual(cpu_grad_kwarg_input, gpu_grad_kwarg_input)
for _ in range(5):
if isinstance(cpu_outputs, torch.Tensor):
check_backward(cpu_outputs, gpu_outputs)
else:
flatten_cpu_outputs = torch.utils._pytree.tree_leaves(cpu_outputs)
flatten_gpu_outputs = torch.utils._pytree.tree_leaves(gpu_outputs)
for cpu_output, gpu_output in zip(flatten_cpu_outputs, flatten_gpu_outputs):
if cpu_output.requires_grad:
check_backward(cpu_output, gpu_output)
@with_tf32_off
@modules(module_db)
def test_memory_format(self, device, dtype, module_info, training):
is_sm86or80 = device.startswith("cuda") and (torch.cuda.get_device_capability(0) == (8, 6)
or torch.cuda.get_device_capability(0) == (8, 0))
# TODO tighten it to a specific module
atol, rtol = (3e-3, 7e-3) if is_sm86or80 else (None, None)
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=True, training=training)
module_memformat_affects_out = module_info.module_memformat_affects_out
def _get_mem_formats(channels_last=False, channels_last_3d=False):
if channels_last:
return ([torch.contiguous_format, torch.channels_last],
[torch.preserve_format, torch.contiguous_format, torch.channels_last])
elif channels_last_3d:
return ([torch.contiguous_format, torch.channels_last_3d],
[torch.preserve_format, torch.contiguous_format, torch.channels_last_3d])
else:
return ([torch.contiguous_format],
[torch.preserve_format, torch.contiguous_format])
# Check that at least one Tensor input has dim == n
def _check_dims(obj, n):
if isinstance(obj, torch.Tensor):
return obj.dim() == n
elif isinstance(obj, (tuple, list)):
return any(_check_dims(o, n) for o in obj)
else:
return False
# Called after _check_dims, when we know that >= 1 tensor can be converted to mem_format
def _to_mem_format(mem_format, obj):
def inner_to_mem_format(obj):
d = obj.dim()
if ((mem_format == torch.channels_last and d != 4)
or (mem_format == torch.channels_last_3d and d != 5)):
return obj.detach().clone().requires_grad_(obj.requires_grad)
return obj.clone().to(memory_format=mem_format).detach().requires_grad_(obj.requires_grad)
return self._traverse_obj(obj, inner_to_mem_format)
def _check_out_mem_format(output, input_mem_format, module_mem_format):
def inner_check_out_mem_format(output):
d = output.dim()
if (d == 4 and ((input_mem_format == torch.channels_last)
or (module_mem_format == torch.channels_last and module_memformat_affects_out))):
self.assertTrue(output.numel() == 0 or output.is_contiguous(memory_format=torch.channels_last))
elif (d == 5 and ((input_mem_format == torch.channels_last_3d)
or (module_mem_format == torch.channels_last_3d and module_memformat_affects_out))):
self.assertTrue(output.numel() == 0 or output.is_contiguous(memory_format=torch.channels_last_3d))
else:
self.assertTrue(output.is_contiguous())
return self._traverse_obj(output, inner_check_out_mem_format)
def _req_grad(t):
return isinstance(t, torch.Tensor) and t.requires_grad
for module_input in module_inputs:
if module_input.forward_input is None:
continue
supports_channels_last = _check_dims(module_input.forward_input.args, 4)
supports_channels_last_3d = _check_dims(module_input.forward_input.args, 5)
input_mem_formats, module_mem_formats = _get_mem_formats(supports_channels_last, supports_channels_last_3d)
with freeze_rng_state():
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# === Get output in (contiguous, contiguous) configuration. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
desired_outputs = m(*args, **kwargs)
# === Do backward pass. ===
ref_diff_outputs = tuple(t for t in torch.utils._pytree.tree_leaves(desired_outputs) if _req_grad(t))
if training and len(ref_diff_outputs) > 0:
params = tuple(p for p in m.parameters())
ref_diff_inputs = tuple(
t
for t in torch.utils._pytree.tree_leaves((args, kwargs, params))
if _req_grad(t)
)
ref_grad_outputs = tuple(
torch.rand_like(t)
for t in ref_diff_outputs
)
ref_grad_inputs = torch.autograd.grad(
ref_diff_outputs,
ref_diff_inputs,
grad_outputs=ref_grad_outputs,
)
for input_mem_format in input_mem_formats:
# === Change memformat of input. ===
d_args = _to_mem_format(input_mem_format, module_input.forward_input.args)
d_kwargs = _to_mem_format(input_mem_format, module_input.forward_input.kwargs)
# See https://github.com/pytorch/pytorch/issues/107861
# When inductor tests are turned on, the setting of requires_grad will be lost
for t1, t2 in zip(
torch.utils._pytree.tree_leaves(d_args),
torch.utils._pytree.tree_leaves(module_input.forward_input.args),
):
t1.requires_grad_(t2.requires_grad)
for t1, t2 in zip(
torch.utils._pytree.tree_leaves(d_kwargs),
torch.utils._pytree.tree_leaves(module_input.forward_input.kwargs),
):
t1.requires_grad_(t2.requires_grad)
module_input.forward_input.args = d_args
module_input.forward_input.kwargs = d_kwargs
for module_mem_format in module_mem_formats:
# === Change memformat of module ===
m.to(memory_format=module_mem_format)
# === Do forward pass. ===
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
outputs = m(*args, **kwargs)
# === Compare outputs to (contiguous, contiguous) output. ===
if input_mem_format != torch.contiguous_format or module_mem_format != torch.contiguous_format:
self.assertEqual(outputs, desired_outputs, rtol=rtol, atol=atol)
# === Check mem format of output. ===
_check_out_mem_format(outputs, input_mem_format, module_mem_format)
# === Do backward pass. ===
diff_outputs = tuple(t for t in torch.utils._pytree.tree_leaves(outputs) if _req_grad(t))
if training and len(diff_outputs) > 0:
params = tuple(p for p in m.parameters())
diff_inputs = tuple(
t
for t in torch.utils._pytree.tree_leaves((args, kwargs, params))
if _req_grad(t)
)
grad_outputs = tuple(
torch.empty_like(t1).copy_(t2)
for (t1, t2) in zip(diff_outputs, ref_grad_outputs)
)
grad_inputs = torch.autograd.grad(
diff_outputs,
diff_inputs,
grad_outputs=grad_outputs,
)
if (
input_mem_format != torch.contiguous_format
or module_mem_format != torch.contiguous_format
):
self.assertEqual(
grad_inputs, ref_grad_inputs, rtol=rtol, atol=atol
)
# === Check mem format of grad_inputs. ===
_check_out_mem_format(grad_inputs, input_mem_format, module_mem_format)
# Test whether train and eval modes differ for each module. Use to verify
# that the ModuleInfo entry flag is correct.
@modules(module_db, train_eval_mode=TrainEvalMode.train_only)
def test_if_train_and_eval_modes_differ(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
# Run forward inputs through to see if the training flag is accessed during forward.
for module_input in module_inputs:
if module_input.forward_input is None:
continue
# === Instantiate the module. ===
args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
m = module_cls(*args, **kwargs)
m.to(device).to(dtype)
m.train(training)
# Remove training attribute and see if forward still works.
delattr(m, 'training')
# === Do forward pass. ===
try:
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
m(*args, **kwargs)
except AttributeError as e:
if "'training'" in str(e):
self.assertTrue(module_info.train_and_eval_differ,
f"The ModuleInfo entry for {module_info.name} has "
"train_and_eval_differ=False, but the training mode was found to "
"affect the forward pass. Consider setting train_and_eval_differ=True "
"for this ModuleInfo entry.")
else:
raise e
@onlyCPU
@modules(module_db)
def test_device_ctx_init(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
with torch.device('meta'):
module_inputs_meta = module_info.module_inputs_func(module_info, device=None, dtype=dtype,
requires_grad=False, training=training)
for module_input, module_input_meta in zip(module_inputs, module_inputs_meta):
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
c_args_meta, c_kwargs_meta = module_input_meta.constructor_input.args, module_input_meta.constructor_input.kwargs
m_cpu = module_cls(*c_args, **c_kwargs)
with torch.device('meta'):
m = module_cls(*c_args_meta, **c_kwargs_meta)
for (p_meta, p_cpu) in chain(zip(m.parameters(), m_cpu.parameters()),
zip(m.buffers(), m_cpu.buffers())):
if torch.nn.parameter.is_lazy(p_meta):
continue
self.assertTrue(p_meta.is_meta)
assert_metadata_eq(self.assertEqual, p_meta, p_cpu)
@modules([module for module in module_db if module.module_error_inputs_func is not None])
def test_errors(self, device, dtype, module_info, training):
module_cls = module_info.module_cls
error_inputs = module_info.module_error_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
for error_input in error_inputs:
module_input = error_input.module_error_input
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
if error_input.error_on == ModuleErrorEnum.CONSTRUCTION_ERROR:
with self.assertRaisesRegex(error_input.error_type, error_input.error_regex):
m = module_cls(*c_args, **c_kwargs)
elif error_input.error_on == ModuleErrorEnum.FORWARD_ERROR:
m = module_cls(*c_args, **c_kwargs)
fw_args, fw_kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
with self.assertRaisesRegex(error_input.error_type, error_input.error_regex):
m(*fw_args, **fw_kwargs)
else:
raise NotImplementedError(f"Unknown error type {error_input.error_on}")
# Only run this test for float32 because the test loops over all the dtypes
@modules([module for module in module_db if not module.is_lazy], allowed_dtypes=[torch.float32])
@parametrize('swap', [True, False])
@parametrize('set_grad', [True, False])
@wrapSwapTensorsTest()
def test_to(self, device, dtype, module_info, training, swap, set_grad):
module_cls = module_info.module_cls
devices = ['cpu']
if torch.cuda.is_available():
devices += ['cuda']
dtypes = module_info.dtypes
module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype,
requires_grad=False, training=training)
torch.__future__.set_swap_module_params_on_conversion(swap)
for module_input in module_inputs:
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs
m = module_cls(*c_args, **c_kwargs)
# Avoid using `module.to()` when constructing module since that is the method we are testing
def _to(m, set_grad=False):
for c in m.children():
_to(c, set_grad=set_grad)
for n, p in m.named_parameters(recurse=False):
new_p = torch.nn.Parameter(p.detach().clone().to(device, dtype))
setattr(m, n, new_p)
if set_grad:
new_p.grad = torch.randn_like(new_p)
for n, b in m.named_buffers(recurse=False):
new_b = b.detach().clone().to(device, dtype)
setattr(m, n, new_b)
_to(m, set_grad=set_grad)
# Check .to() can be run after forward and backward with swap
has_params = len(list(m.parameters())) > 0
if swap and not set_grad and has_params:
out = m(*args, **kwargs)
if isinstance(out, tuple):
out = out[0]
out.sum().backward()
m.to(dtype=torch.half)
# reset
m.to(dtype=torch.float32)
prev_device, prev_dtype = device, dtype
for device_, dtype_ in product(devices, dtypes):
# if device/dtype do not change, grad.to(device, dtype) is a no-op so
# swapping will not change ._cdata
# parameters will be wrapped in an nn.Parameter before swapping
# which will cause the ._cdata to change
g_no_swap = device_ == prev_device and dtype_ == prev_dtype
prev_device, prev_dtype = device_, dtype_
p_ids_before = [id(p) for p in m.parameters()]
p_cdatas_before = [p._cdata for p in m.parameters()]
if set_grad:
g_ids_before = [id(p.grad) for p in m.parameters()]
g_cdatas_before = [p.grad._cdata for p in m.parameters()]
m.to(device=device_, dtype=dtype_)
self.assertTrue(all(isinstance(p, torch.nn.Parameter) for p in m.parameters()))
self.assertTrue(all(p.device.type == device_ for p in m.parameters()))
self.assertTrue(all(p.dtype == dtype_ for p in m.parameters()))
p_ids_after = [id(p) for p in m.parameters()]
p_cdatas_after = [p._cdata for p in m.parameters()]
if set_grad:
self.assertTrue(all(p.grad.device.type == device_ for p in m.parameters()))
self.assertTrue(all(p.grad.dtype == dtype_ for p in m.parameters()))
g_ids_after = [id(p.grad) for p in m.parameters()]
g_cdatas_after = [p.grad._cdata for p in m.parameters()]
if swap:
# id same, ._cdata differs --> swapped cdata of THPVariable
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
self.assertTrue(all(a != b for a, b in zip(p_cdatas_before, p_cdatas_after)))
if set_grad:
self.assertTrue(
all(a == b if g_no_swap else a != b for a, b in zip(g_cdatas_before, g_cdatas_after)))
else:
# id and _cdata remain the same --> .data setting
self.assertTrue(all(a == b for a, b in zip(p_cdatas_before, p_cdatas_after)))
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
if set_grad:
self.assertTrue(all(a == b for a, b in zip(g_cdatas_before, g_cdatas_after)))
self.assertTrue(all(a == b for a, b in zip(g_ids_before, g_ids_after)))
@modules([module for module in module_db if not module.is_lazy], allowed_dtypes=[torch.float32])
@parametrize('swap', [True, False])
@wrapSwapTensorsTest()
def test_to_empty(self, device, dtype, module_info, swap, training):
module_cls = module_info.module_cls
with torch.device("meta"):
module_inputs = module_info.module_inputs_func(module_info, device=None, dtype=dtype,
requires_grad=False, training=training)
torch.__future__.set_swap_module_params_on_conversion(swap)
device_ = torch.device(device)
for module_input in module_inputs:
c_args, c_kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs
with torch.device("meta"):
m = module_cls(*c_args, **c_kwargs)
p_ids_before = [id(p) for p in m.parameters()]
p_cdatas_before = [p._cdata for p in m.parameters()]
m.to_empty(device=device_)
self.assertTrue(all(isinstance(p, torch.nn.Parameter) for p in m.parameters()))
self.assertTrue(all(p.device == device_ for p in m.parameters()))
self.assertTrue(all(p.dtype == dtype for p in m.parameters()))
p_ids_after = [id(p) for p in m.parameters()]
p_cdatas_after = [p._cdata for p in m.parameters()]
if swap:
# id same, ._cdata differs --> swapped cdata of THPVariable
self.assertTrue(all(a == b for a, b in zip(p_ids_before, p_ids_after)))
self.assertTrue(all(a != b for a, b in zip(p_cdatas_before, p_cdatas_after)))
else:
# id and ._cdata differ
# meta and device have different shallow copy types, so this will create a new
# parameter and assign it to the module
self.assertTrue(all(a != b for a, b in zip(p_ids_before, p_ids_after)))