forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_scatter_gather_ops.py
383 lines (328 loc) · 18.4 KB
/
test_scatter_gather_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# Owner(s): ["module: scatter & gather ops"]
import random
import torch
from torch.testing import make_tensor
from torch.testing._internal.common_utils import \
(parametrize, run_tests, TestCase, DeterministicGuard)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, onlyCPU, dtypes, dtypesIfCUDA,
toleranceOverride, tol,)
from torch.testing._internal.common_dtype import \
(get_all_dtypes,)
# Protects against includes accidentally setting the default dtype
assert torch.get_default_dtype() is torch.float32
# Note: test_scatter_gather_ops.py
# This test file tests scatter and gather operations,
# like torch.scatter and torch.gather.
class TestScatterGather(TestCase):
# Fills an index tensor with valid indices
def _fill_indices(self, idx, dim, dim_size, elems_per_row, m, n, o, unique_indices=True):
for i in range(1 if dim == 0 else m):
for j in range(1 if dim == 1 else n):
for k in range(1 if dim == 2 else o):
ii = [i, j, k]
ii[dim] = slice(0, idx.size(dim) + 1)
if unique_indices:
idx[tuple(ii)] = torch.randperm(dim_size)[0:elems_per_row]
else:
idx[tuple(ii)] = torch.randint(dim_size, (elems_per_row,))
@dtypes(torch.float32, torch.complex64)
def test_gather(self, device, dtype):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
src = make_tensor((m, n, o), device=device, dtype=dtype)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = make_tensor(idx_size, device=device, dtype=torch.long)
self._fill_indices(idx, dim, src.size(dim), elems_per_row, m, n, o)
actual = torch.gather(src, dim, idx)
expected = torch.zeros(idx_size, device=device, dtype=dtype)
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
expected[i, j, k] = src[tuple(ii)]
self.assertEqual(actual, expected, atol=0, rtol=0)
# Guarded because torch.max isn't defined for complex types
if not dtype.is_complex:
src = make_tensor((3, 4, 5), device=device, dtype=dtype)
expected, idx = src.max(2, True)
actual = torch.gather(src, 2, idx)
self.assertEqual(actual, expected, atol=0, rtol=0)
@dtypes(torch.bool)
def test_gather_bool(self, device, dtype):
src = torch.tensor(((False, True), (True, True)), device=device, dtype=dtype)
idx = torch.tensor(((0, 0), (1, 0)), device=device, dtype=torch.long)
actual = torch.gather(src, 1, idx)
expected = torch.tensor(((False, False), (True, True)), device=device, dtype=dtype)
self.assertEqual(actual, expected, atol=0, rtol=0)
@parametrize("sparse_grad", [False, True])
@dtypes(torch.float32, torch.float64)
def test_gather_backward_with_empty_index_tensor(self, device, dtype, sparse_grad):
dim = -1
input = torch.rand([10, 5], dtype=dtype, device=device, requires_grad=True)
index = torch.randint(0, 2, [3, 0], dtype=torch.int64, device=device)
res = torch.gather(input, dim, index, sparse_grad=sparse_grad)
res.sum().backward()
grad = input.grad.to_dense() if sparse_grad else input.grad
expected_grad = torch.zeros_like(input, requires_grad=False)
self.assertEqual(grad, expected_grad, atol=0, rtol=0)
def _test_scatter_base(self, fn, *, device, dtype, is_scalar, reduction,
unique_indices=True, include_self=True):
m, n, o = random.randint(10, 20), random.randint(10, 20), random.randint(10, 20)
elems_per_row = random.randint(1, 10)
dim = random.randrange(3)
idx_size = [m, n, o]
idx_size[dim] = elems_per_row
idx = torch.empty(tuple(idx_size), device=device, dtype=torch.long)
self._fill_indices(idx, dim, ([m, n, o])[dim], elems_per_row, m, n, o, unique_indices)
if is_scalar:
src = random.random()
else:
src_size = [random.randint(1, 5) + s for s in idx_size]
src = make_tensor(tuple(src_size), device=device, dtype=dtype)
base = make_tensor((m, n, o), device=device, dtype=dtype)
if reduction is not None:
if fn is torch.Tensor.scatter_reduce_:
actual = fn(base.clone(), dim, idx, src, reduce=reduction, include_self=include_self)
else:
actual = fn(base.clone(), dim, idx, src, reduce=reduction)
else:
actual = fn(base.clone(), dim, idx, src)
expected = base.clone()
counts = torch.zeros(base.shape, dtype=torch.long, device=device) + include_self
for i in range(idx_size[0]):
for j in range(idx_size[1]):
for k in range(idx_size[2]):
ii = [i, j, k]
ii[dim] = idx[i, j, k]
if fn is torch.Tensor.scatter_add_:
expected[tuple(ii)] += src[i, j, k]
else:
# method may be 'scatter_', 'scatter', 'scatter_reduce'
# or 'scatter_reduce_', the former two might have a reduction argument
# while the latter two always do
value = src if is_scalar else src[i, j, k]
if ((not include_self) and counts[tuple(ii)] == 0):
expected[tuple(ii)] = value
else:
if reduction == "add" or reduction == "sum":
expected[tuple(ii)] += value
elif reduction == "multiply" or reduction == "prod":
expected[tuple(ii)] *= value
elif reduction == "amax":
expected[tuple(ii)] = max(expected[tuple(ii)], value)
elif reduction == "amin":
expected[tuple(ii)] = min(expected[tuple(ii)], value)
elif reduction == "mean":
expected[tuple(ii)] += value
else:
expected[tuple(ii)] = value
counts[tuple(ii)] += 1
if (reduction == "mean"):
counts.masked_fill_(counts == 0, 1)
if (dtype.is_floating_point or dtype.is_complex):
expected /= counts
else:
expected.div_(counts, rounding_mode="floor")
if dtype == torch.float16 or dtype == torch.bfloat16:
# Some CUDA kernels (e.g. indexing_backward_kernel_stride_1) that are called during
# the test use fp32 for internal accumulation for improved accuracy. When using 16 bit
# precision types can be small differences
self.assertEqual(actual, expected, atol=0.04, rtol=0.05)
else:
self.assertEqual(actual, expected, atol=0, rtol=0)
# Tests empty index
dst = make_tensor((2, 2), device=device, dtype=dtype)
idx = torch.tensor((), device=device, dtype=torch.long)
src = make_tensor((2, 2), device=device, dtype=dtype)
if reduction is not None:
actual = fn(dst, 0, idx, src, reduce=reduction)
else:
actual = fn(dst, 0, idx, src)
self.assertEqual(actual, dst, atol=0, rtol=0)
@dtypes(torch.float16, torch.float32, torch.complex64)
def test_scatter_(self, device, dtype):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
is_scalar=False, reduction=None)
@dtypes(torch.float16, torch.float32, torch.complex64)
def test_scatter__scalar(self, device, dtype):
self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
is_scalar=True, reduction=None)
# FIXME: RuntimeError: "cuda_scatter_gather_base_kernel_reduce_multiply" not implemented for 'ComplexFloat'
@toleranceOverride({torch.float16: tol(atol=1e-2, rtol=0)})
@dtypesIfCUDA(torch.float16, torch.float32)
@dtypes(torch.float16, torch.float32, torch.complex64)
def test_scatter__reductions(self, device, dtype):
for reduction in ("add", "multiply"):
self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
is_scalar=False, reduction=reduction)
self._test_scatter_base(torch.Tensor.scatter_, device=device, dtype=dtype,
is_scalar=True, reduction=reduction)
@dtypes(torch.float16, torch.float32, torch.complex64)
def test_scatter_add_(self, device, dtype):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
self._test_scatter_base(torch.Tensor.scatter_add_, device=device, dtype=dtype,
is_scalar=False, reduction=None)
@dtypes(torch.float32)
def test_scatter_add_mult_index_base(self, device, dtype):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
m, n = 30, 40
idx = torch.zeros(m, n, device=device, dtype=torch.long)
src = torch.ones(m, n, device=device, dtype=dtype)
res0 = torch.zeros(m, n, device=device, dtype=dtype).scatter_add_(0, idx, src)
res1 = torch.zeros(m, n, device=device, dtype=dtype).scatter_add_(1, idx, src)
self.assertEqual(res0[0, :], m * torch.ones(n, device=device, dtype=dtype), atol=0, rtol=0)
self.assertEqual(res1[:, 0], n * torch.ones(m, device=device, dtype=dtype), atol=0, rtol=0)
# FIXME: discrepancy between bool ReduceAdd on CUDA and CPU (a + b on CPU and buggy a && b on CUDA)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=False))
def test_scatter_reduce_sum(self, device, dtype):
for include_self in (True, False):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='sum', unique_indices=False,
include_self=include_self)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True))
@dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False))
def test_scatter_reduce_prod(self, device, dtype):
for include_self in (True, False):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='prod', unique_indices=False,
include_self=include_self)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_bool=False))
@dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False))
def test_scatter_reduce_mean(self, device, dtype):
for include_self in (True, False):
for deterministic in [False, True]:
with DeterministicGuard(deterministic):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='mean', unique_indices=False,
include_self=include_self)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False))
@dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False))
def test_scatter_reduce_amax(self, device, dtype):
for include_self in (True, False):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='amax', unique_indices=False,
include_self=include_self)
# simple test for nan/inf propagation
if (dtype.is_floating_point):
input = torch.zeros(3, device=device, dtype=dtype)
src = torch.tensor([1, float('nan'), -float('inf'), -float('inf'), 2, float('inf')], device=device, dtype=dtype)
idx = torch.tensor([0, 0, 1, 1, 2, 2], device=device)
input.scatter_reduce_(0, idx, src, 'amax', include_self=include_self)
expected_result = torch.tensor([float('nan'), -float('inf'), float('inf')], device=device, dtype=dtype)
if (include_self):
expected_result[1] = 0
self.assertEqual(input, expected_result)
@dtypes(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False))
@dtypesIfCUDA(*get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False, include_bool=False))
def test_scatter_reduce_amin(self, device, dtype):
for include_self in (True, False):
self._test_scatter_base(torch.Tensor.scatter_reduce_, device=device, dtype=dtype,
is_scalar=False, reduction='amin', unique_indices=False,
include_self=include_self)
# simple test for nan/inf propagation
if (dtype.is_floating_point):
input = torch.zeros(3, device=device, dtype=dtype)
src = torch.tensor([1, float('nan'), -2, -float('inf'), float('inf'), float('inf')], device=device, dtype=dtype)
idx = torch.tensor([0, 0, 1, 1, 2, 2], device=device)
input.scatter_reduce_(0, idx, src, 'amin', include_self=include_self)
expected_result = torch.tensor([float('nan'), -float('inf'), float('inf')], device=device, dtype=dtype)
if (include_self):
expected_result[2] = 0
self.assertEqual(input, expected_result)
@onlyCPU
@dtypes(torch.float32, torch.float64, torch.bfloat16, torch.float16)
def test_scatter_expanded_index(self, device, dtype):
def helper(input_size, idx_size):
input = torch.randn(input_size, device=device).to(dtype=dtype)
input2 = input.clone()
shape = [1] * len(input_size)
shape[0] = idx_size
dim_size = input_size[0]
idx = torch.randint(0, dim_size, shape)
# The fast path on scatter when index is expanded
# will depend on sorted index where the collected src indice
# for each row in input will be mapped to rowptrs in a CSR format.
# Create some empty rows by masking:
mask = (idx > 1) * (idx < 4)
idx[mask] = 0
expanded_shape = input_size
expanded_shape[0] = idx_size
idx = idx.expand(expanded_shape)
idx2 = idx.contiguous()
src = torch.randn(expanded_shape, device=device).to(dtype=dtype)
out = input.scatter_add(0, idx, src)
out2 = input2.scatter_add(0, idx2, src)
self.assertEqual(out, out2)
for reduce in ["sum", "prod", "mean", "amax", "amin"]:
for include_self in [True, False]:
out = input.scatter_reduce(0, idx, src, reduce=reduce, include_self=include_self)
out2 = input2.scatter_reduce(0, idx2, src, reduce=reduce, include_self=include_self)
self.assertEqual(out, out2)
helper([50, 17], 100)
helper([50, 1], 100)
helper([50, 8, 7], 100)
helper([50, 3, 4, 5], 100)
@onlyCPU
@dtypes(torch.float32, torch.float64, torch.bfloat16)
def test_gather_expanded_index(self, device, dtype):
# Test when index is [N, 1], which would have stride [1, 0]
# should be excluded from the fast path when index ix expanded
input = torch.arange(25).view(5, 5)
input2 = input.to(dtype=dtype)
idx = torch.arange(5).view(5, 1)
out = torch.gather(input, 0, idx)
out2 = torch.gather(input2, 0, idx)
self.assertEqual(out.to(dtype=dtype), out2)
def helper(input_size, idx_size):
input = torch.randn(input_size, device=device).to(dtype=dtype)
input2 = input.clone()
shape = [1] * len(input_size)
shape[0] = idx_size
dim_size = input_size[0]
idx = torch.randint(0, dim_size, shape)
# Test the fast path on gather when index is expanded
expanded_shape = input_size
expanded_shape[0] = idx_size
idx = idx.expand(expanded_shape)
idx2 = idx.contiguous()
out = torch.gather(input, 0, idx)
out2 = torch.gather(input2, 0, idx2)
self.assertEqual(out, out2)
# test unsqueezed index
# expanded_index kernel can not handle the case:
# the size > 1 and stride == 1 at a dimension.
# for example: the index with size of [1, 8, 7], stride of [1, 1, 0].
# see https://github.com/pytorch/pytorch/issues/129093
def unsqueeze_helper(idx, dim):
if dim == 2:
return idx.unsqueeze(1).t()
else:
return unsqueeze_helper(idx, dim - 1).unsqueeze(dim - 1)
idx = torch.randint(0, dim_size, (input.shape[1],))
idx = unsqueeze_helper(idx, len(input_size))
expanded_shape[0] = 1
idx = idx.expand(expanded_shape)
idx2 = idx.contiguous()
out = torch.gather(input, 0, idx)
out2 = torch.gather(input2, 0, idx2)
self.assertEqual(out, out2)
helper([50, 17], 100)
helper([50, 1], 100)
helper([50, 8, 7], 100)
helper([50, 3, 4, 5], 100)
# Generic Device Test Framework instantation, see
# https://github.com/pytorch/pytorch/wiki/Running-and-writing-tests
# for details.
instantiate_device_type_tests(TestScatterGather, globals())
if __name__ == '__main__':
run_tests()