forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_stateless.py
926 lines (830 loc) · 37.1 KB
/
test_stateless.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
# Owner(s): ["module: nn"]
import contextlib
import os
import re
import subprocess
import sys
import unittest
import torch
import torch.nn.utils.stateless as stateless
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_utils import run_tests, TestCase, parametrize, instantiate_parametrized_tests, \
subtest
class MockModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.l1 = torch.nn.Linear(1, 1)
self.buffer = torch.nn.Buffer(torch.ones(1))
self.foo = 0.0
def forward(self, x):
return self.l1(x) + self.buffer
class MockTiedModule(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.l1 = torch.nn.Linear(1, 1)
self.tied_bias = self.l1.bias
self.buffer = torch.nn.Buffer(torch.ones(1))
self.tied_buffer = self.buffer
def forward(self, x):
return self.l1(x) + self.tied_bias + self.buffer + self.tied_buffer
class TestStatelessFunctionalAPI(TestCase):
def _run_call_with_mock_module(self, module, functional_call, device='cpu', prefix=''):
x = torch.rand((1, 1)).to(device)
weight = torch.tensor([[1.0]], device=device)
bias = torch.tensor([0.0], device=device)
buffer = torch.tensor([0.0], device=device)
if prefix != '':
parameters = {f'{prefix}.l1.weight': weight,
f'{prefix}.l1.bias': bias,
f'{prefix}.buffer': buffer}
else:
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
to_check = module
if prefix != '':
to_check = getattr(module, prefix)
prev_weight = to_check.l1.weight.clone()
prev_buffer = to_check.buffer.clone()
# the parameters represent an identity function contrary to the
# existing params in module. So here we expect the result to be the
# same as the input if the weight swapping went well.
res = functional_call(module, parameters, x)
self.assertEqual(x, res)
# check that the weight remain unmodified
cur_weight = to_check.l1.weight
cur_buffer = to_check.buffer
self.assertEqual(cur_weight, prev_weight)
self.assertEqual(cur_buffer, prev_buffer)
@contextlib.contextmanager
def _ensure_module_unchanged(self, module, message):
orig_parameters, orig_buffers = tuple(module.parameters()), tuple(module.buffers())
orig_tensors = orig_parameters + orig_buffers
orig_tensors_values = tuple(t.clone() for t in orig_tensors)
try:
yield module
finally:
parameters, buffers = tuple(module.parameters()), tuple(module.buffers())
self.assertTrue(
len(parameters) == len(orig_parameters)
and len(buffers) == len(orig_buffers)
and all(
t1 is t2 and torch.allclose(t1, t3)
for t1, t2, t3 in zip(
orig_tensors,
parameters + buffers,
orig_tensors_values,
)
),
message,
)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_functional_call(self, functional_call):
module = MockModule()
self._run_call_with_mock_module(module, functional_call)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_functional_call_with_jit(self, functional_call):
module = MockModule()
jit_module = torch.jit.script(module)
with self.assertRaisesRegex(
RuntimeError,
r'used with Jitted modules'
):
self._run_call_with_mock_module(jit_module, functional_call)
x = torch.rand((1, 1))
traced_module = torch.jit.trace(module, x)
with self.assertRaisesRegex(
RuntimeError,
r'used with Jitted modules'
):
self._run_call_with_mock_module(traced_module, functional_call)
@unittest.skipIf(not TEST_MULTIGPU, 'multi-GPU not supported')
@unittest.skip("This doesn't work right now")
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_functional_call_with_data_parallel(self, functional_call):
module = MockModule()
module.cuda()
dp_module = torch.nn.DataParallel(module, [0, 1])
self._run_call_with_mock_module(dp_module, functional_call, device='cuda', prefix='module')
@unittest.skipIf(not TEST_MULTIGPU, 'multi-GPU not supported')
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_functional_call_with_data_parallel_error(self, functional_call):
module = MockModule()
module.cuda()
dp_module = torch.nn.DataParallel(module, [0, 1])
with self.assertRaisesRegex(RuntimeError, r'used with nn.DataParallel module'):
functional_call(
dp_module,
{'module.weight': torch.zeros(5, device='cuda')},
(torch.ones(2, 5, device='cuda'),))
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_functional_call_with_gradient(self, functional_call):
module = MockModule()
x = torch.rand((1, 1))
weight = torch.tensor([[1.0]], requires_grad=True)
bias = torch.tensor([0.0], requires_grad=True)
buffer = torch.tensor([0.0])
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
res = functional_call(module, parameters, x)
# Check that a backward step calculates the gradient of the supplied parameters
res.backward()
self.assertIsNotNone(weight.grad)
self.assertIsNotNone(bias.grad)
self.assertIsNone(buffer.grad)
# Gradient was not calculated for the module stated and buffers
self.assertIsNone(module.l1.weight.grad)
self.assertIsNone(module.l1.bias.grad)
self.assertIsNone(module.buffer.grad)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_functional_batch_norm(self, functional_call):
module = torch.nn.BatchNorm1d(10)
module.train() # Allow stats update
# lets replace the running_mean buffer and check if its correctly updated
x = torch.full((20, 10), 128.0)
rm = torch.zeros(10)
parameters = {'running_mean': rm}
prev_rm = module.running_mean.clone()
functional_call(module, parameters, x)
cur_rm = module.running_mean
self.assertEqual(cur_rm, prev_rm)
self.assertEqual(rm, torch.full((10,), 12.8))
# Now run functional without reparametrization and check that the module has
# been updated
functional_call(module, {}, x)
self.assertEqual(module.running_mean, torch.full((10,), 12.8))
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_circular_references(self, functional_call):
module = MockModule()
# Add a circular reference
module.l1.m = module
x = torch.rand((1, 1))
weight = torch.tensor([[1.0]])
bias = torch.tensor([0.0])
buffer = torch.tensor([0.0])
parameters = {'l1.m.l1.weight': weight,
'l1.bias': bias,
'l1.m.buffer': buffer}
prev_weight = module.l1.weight.clone()
prev_buffer = module.buffer.clone()
res = functional_call(module, parameters, x, tie_weights=False)
self.assertEqual(x, res)
# check that the weights remain unmodified and were correctly accesed
cur_weight = module.l1.weight
cur_buffer = module.buffer
self.assertEqual(cur_weight, prev_weight)
self.assertEqual(cur_buffer, prev_buffer)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_reparametrized_module_change_parametrization_original(self, functional_call):
module = MockModule()
torch.nn.utils.parametrizations.spectral_norm(module.l1)
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
orig_sn_weight = module.l1.weight.clone()
x = torch.rand((1, 1))
# We substitute the parameter inside the parametrization
# the parametrization itself is not overwritten so it will be applied with a different
# value for the original tensor
parameters = {'l1.parametrizations.weight.original': torch.nn.Parameter(torch.tensor([[1.0]])),
'l1.bias': torch.tensor([0.0]),
'buffer': torch.tensor([0.0])}
res = functional_call(module, parameters, x)
self.assertEqual(x, res)
# verify that the spectral normalization is still applied
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
self.assertEqual(orig_sn_weight, module.l1.weight)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_reparametrize_module_fail_reset_to_original(self, functional_call):
module = MockModule()
torch.nn.utils.parametrizations.spectral_norm(module.l1)
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
orig_sn_weight = module.l1.weight.clone()
# We substitute the parameter inside the parametrization
# the parametrization itself is not overwritten so it will be applied with a different
# value for the original tensor
parameters = {'l1.parametrizations.weight.original': torch.nn.Parameter(torch.tensor([[1.0]])),
'l1.bias': torch.tensor([0.0]),
'buffer': torch.tensor([0.0])}
with self.assertRaisesRegex(RuntimeError, "shapes cannot be multiplied"):
@torch._dynamo.disable
def _error_case():
x = torch.rand((4, 5)) # to work, it should be of size (1, 1)
functional_call(module, parameters, x) # this call will fail because x is the wrong size
_error_case()
# verify that the spectral normalization is still applied
self.assertTrue('l1.parametrizations.weight.original' in dict(module.named_parameters()))
self.assertEqual(orig_sn_weight, module.l1.weight)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_reparametrize_some_weights(self, functional_call):
module = MockModule()
weight = torch.tensor([[2.0]])
extra = torch.tensor([1.0])
parameters = {'l1.weight': weight}
x = torch.randn(1, 1)
out = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + module.l1.bias + module.buffer)
parameters = {'l1.weight': weight,
'extra': extra}
x = torch.randn(1, 1)
out = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + module.l1.bias + module.buffer)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_reparametrize_strict(self, functional_call):
module = MockModule()
weight = torch.tensor([[2.0]])
bias = torch.tensor([5.0])
buffer = torch.tensor([3.0])
extra = torch.tensor([1.0])
# All weights no error
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a successful call',
):
out = functional_call(module, parameters, x, strict=True)
self.assertEqual(out, x * weight + bias + buffer)
# Some weights
parameters = {'l1.weight': weight}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
RuntimeError,
re.escape("Missing key(s): 'buffer', 'l1.bias'."),
):
out = functional_call(module, parameters, x, strict=True)
# Extra keys
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer,
'extra': extra}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
RuntimeError,
re.escape("Unexpected key(s): 'extra'."),
):
out = functional_call(module, parameters, x, strict=True)
# Some weights with extra keys
parameters = {'l1.weight': weight,
'extra': extra}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
RuntimeError,
re.escape("Unexpected key(s): 'extra'.") + r'\s+' + re.escape("Missing key(s): 'buffer', 'l1.bias'."),
):
out = functional_call(module, parameters, x, strict=True)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_reparametrize_special(self, functional_call):
class NonTensor:
def __repr__(self):
return f'<{self.__class__.__name__}>'
module = MockModule()
weight = torch.tensor([[2.0]])
bias = torch.tensor([5.0])
buffer = torch.tensor([3.0])
non_tensor = NonTensor()
# Set to None
parameters = {'l1.weight': weight,
'l1.bias': None,
'buffer': buffer}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a successful call',
):
out = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + buffer)
# Set non-tensor
parameters = {'l1.weight': non_tensor}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
TypeError,
re.escape("<NonTensor> is not an instance of torch.Tensor"),
):
out = functional_call(module, parameters, x)
# Set non-tensor attribute
parameters = {'l1.weight': weight, 'foo': torch.tensor([1.0])}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
TypeError,
re.escape("attribute `foo`: 0.0 is not an instance of torch.Tensor"),
):
out = functional_call(module, parameters, x)
# Set non-exist submodule
parameters = {'l1.weight': weight,
'l2.bias': bias}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
AttributeError,
re.escape("MockModule has no attribute `l2`"),
):
out = functional_call(module, parameters, x)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_tied_weights_warns(self, functional_call):
module = MockModule()
module.tied_bias = module.l1.bias
module.tied_buffer = torch.nn.Buffer(module.buffer)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_reparametrize_tie_weights(self, functional_call):
module = MockTiedModule()
weight = torch.tensor([[2.0]])
bias = torch.tensor([5.0])
buffer = torch.tensor([3.0])
extra = torch.tensor([1.0])
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
x = torch.randn(1, 1)
out = functional_call(module, parameters, x, tie_weights=True)
self.assertEqual(out, x * weight + bias + bias + buffer + buffer)
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer,
'extra': extra}
x = torch.randn(1, 1)
out = functional_call(module, parameters, x, tie_weights=True)
self.assertEqual(out, x * weight + bias + bias + buffer + buffer)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_reparametrize_tie_some_weights(self, functional_call):
module = MockTiedModule()
weight = torch.tensor([[2.0]])
buffer = torch.tensor([3.0])
parameters = {'l1.weight': weight,
'buffer': buffer}
x = torch.randn(1, 1)
out = stateless.functional_call(module, parameters, x, tie_weights=True)
self.assertEqual(out, x * 2. + module.l1.bias + module.tied_bias + buffer + buffer)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless._functional_call, "stateless")
])
def test_tied_weights_errors(self, functional_call):
module = MockTiedModule()
weight = torch.tensor([[1.0]])
bias = torch.tensor([0.0])
buffer = torch.tensor([0.0])
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
x = torch.randn(1, 1)
self.assertNotWarn(lambda: functional_call(module, parameters, x, tie_weights=True))
# if tied values are the same tensors, shouldn't warn
parameters['tied_bias'] = bias
parameters['tied_buffer'] = buffer
self.assertNotWarn(lambda: functional_call(module, parameters, x, tie_weights=True))
del parameters['tied_bias']
del parameters['tied_buffer']
with self.assertRaisesRegex(
ValueError,
re.escape("functional_call got multiple values for keys ['l1.bias', 'tied_bias']"),
):
parameters['tied_bias'] = torch.tensor([5.0])
functional_call(module, parameters, x, tie_weights=True)
del parameters['tied_bias']
with self.assertRaisesRegex(
ValueError,
re.escape("functional_call got multiple values for keys ['buffer', 'tied_buffer']"),
):
parameters['tied_buffer'] = torch.tensor([5.0])
functional_call(module, parameters, x, tie_weights=True)
def test_tied_weights_no_error_without_flag(self):
module = MockTiedModule()
weight = torch.tensor([[1.0]])
bias = torch.tensor([0.0])
buffer = torch.tensor([0.0])
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
x = torch.randn(1, 1)
self.assertNotWarn(lambda: stateless._functional_call(module, parameters, x, tie_weights=False))
parameters['tied_bias'] = torch.tensor([5.0])
self.assertNotWarn(lambda: stateless._functional_call(module, parameters, x, tie_weights=False))
del parameters['tied_bias']
parameters['tied_buffer'] = torch.tensor([5.0])
self.assertNotWarn(lambda: stateless._functional_call(module, parameters, x, tie_weights=False))
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_reparametrize_tie_weights_strict(self, functional_call):
module = MockTiedModule()
weight = torch.tensor([[2.0]])
bias = torch.tensor([5.0])
buffer = torch.tensor([3.0])
extra = torch.tensor([1.0])
# Tie weights no error
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a successful call',
):
out = functional_call(module, parameters, x, tie_weights=True, strict=True)
self.assertEqual(out, x * weight + bias + bias + buffer + buffer)
# Tie weights without flag
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
RuntimeError,
re.escape("Missing key(s): 'tied_bias', 'tied_buffer'."),
):
out = functional_call(module, parameters, x, tie_weights=False, strict=True)
# Tie some weights
parameters = {'l1.weight': weight,
'buffer': buffer}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
RuntimeError,
re.escape("Missing key(s): 'l1.bias', 'tied_bias'."),
):
out = stateless.functional_call(module, parameters, x, tie_weights=True, strict=True)
# Tie weights with extra keys
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer,
'extra': extra}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
RuntimeError,
re.escape("Unexpected key(s): 'extra'."),
):
out = stateless.functional_call(module, parameters, x, tie_weights=True, strict=True)
# Tie weights with extra keys and without flag
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer,
'extra': extra}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
RuntimeError,
re.escape("Unexpected key(s): 'extra'.") + r'\s+' + re.escape("Missing key(s): 'tied_bias', 'tied_buffer'."),
):
out = stateless.functional_call(module, parameters, x, tie_weights=False, strict=True)
# Tie some weights with extra keys
parameters = {'l1.weight': weight,
'buffer': buffer,
'extra': extra}
x = torch.randn(1, 1)
with self._ensure_module_unchanged(
module,
'the module should not have been modified by a failed call',
):
with self.assertRaisesRegex(
RuntimeError,
re.escape("Unexpected key(s): 'extra'.") + r'\s+' + re.escape("Missing key(s): 'l1.bias', 'tied_bias'."),
):
out = stateless.functional_call(module, parameters, x, tie_weights=True, strict=True)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_setattr(self, functional_call):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.foo = torch.nn.Buffer(torch.tensor([0.0]))
def forward(self, x):
self.foo = self.foo + 1
return x + self.foo
foo = torch.tensor([2.0])
x = torch.randn(1)
a = {'foo': foo}
mod = Foo()
functional_call(mod, a, x)
self.assertEqual(mod.foo, torch.tensor([0.0]))
self.assertEqual(a['foo'], torch.tensor([3.0]))
self.assertEqual(foo, torch.tensor([2.0]))
self.assertTrue(a['foo'] is not foo)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_in_place_operator(self, functional_call):
class Foo(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.foo = torch.nn.Buffer(torch.tensor([0.0]))
def forward(self, x):
self.foo.add_(1)
return x + self.foo
foo = torch.tensor([2.0])
x = torch.randn(1)
a = {'foo': foo}
mod = Foo()
functional_call(mod, a, x)
self.assertEqual(mod.foo, torch.tensor([0.0]))
self.assertEqual(a['foo'], torch.tensor([3.0]))
self.assertEqual(foo, torch.tensor([3.0]))
self.assertTrue(a['foo'] is foo)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_setattr_strict(self, functional_call):
class Bar(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
assert not hasattr(self, 'extra')
def forward(self, x):
return x + self.extra
a = {'extra': torch.zeros(())}
mod = Bar()
self.assertTrue(not hasattr(mod, 'extra'))
out = functional_call(mod, a, torch.ones(()))
self.assertEqual(out, torch.ones(()))
self.assertTrue(not hasattr(mod, 'extra'))
a = {'extra': torch.zeros(())}
with self.assertRaisesRegex(
RuntimeError,
re.escape("Unexpected key(s): 'extra'."),
):
out = functional_call(mod, a, torch.ones(()), strict=True)
self.assertTrue(not hasattr(mod, 'extra'))
a = {}
with self.assertRaisesRegex(
AttributeError,
re.escape("'Bar' object has no attribute 'extra'"),
):
out = functional_call(mod, a, torch.ones(()))
self.assertTrue(not hasattr(mod, 'extra'))
a = {}
with self.assertRaisesRegex(
AttributeError,
re.escape("'Bar' object has no attribute 'extra'"),
):
out = functional_call(mod, a, torch.ones(()), strict=True)
self.assertTrue(not hasattr(mod, 'extra'))
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_functional_call_with_kwargs(self, functional_call):
class Foo(torch.nn.Module):
def __init__(self, x):
super().__init__()
self.x = x
def forward(self, inp, *, other_inp):
return inp * self.x + other_inp
a = {'x': torch.zeros(2, 3)}
mod = Foo(torch.randn(2, 3))
inp, other_inp = torch.randn(2, 3), torch.randn(2, 3)
with self.assertRaisesRegex(TypeError, "missing 1 required keyword-only argument: 'other_inp'"):
functional_call(mod, a, inp)
res = functional_call(mod, a, inp, {'other_inp': other_inp})
self.assertEqual(res, other_inp)
res_1 = functional_call(mod, a, (), {'inp': inp, 'other_inp': other_inp})
self.assertEqual(res, res_1)
res_2 = functional_call(mod, a, kwargs={'inp': inp, 'other_inp': other_inp})
self.assertEqual(res, res_2)
def test_functional_call_tuple_dicts(self):
mod = MockModule()
x = torch.rand((1, 1))
parameters = {k: torch.ones_like(v) for k, v in mod.named_parameters()}
buffers = {k: torch.zeros_like(v) for k, v in mod.named_buffers()}
# two dictionaries
res = torch.func.functional_call(mod, (parameters, buffers), x)
self.assertEqual(res, x + 1)
# no dictionaries
res = torch.func.functional_call(mod, (), x)
self.assertEqual(res, mod(x))
# three dictonaries
a = ({'l1.weight': torch.ones(1, 1)}, {'l1.bias': torch.ones(1)}, {'buffer': torch.zeros(1)})
res = torch.func.functional_call(mod, a, x)
self.assertEqual(res, x + 1)
def test_functional_call_multiple_dicts_error(self):
mod = MockModule()
x = torch.rand((1, 1))
parameters = {'l1.weight': torch.zeros((1, 1)), 'l1.bias': torch.zeros((1, 1))}
repeated_parameters = {'l1.weight': torch.ones((1, 1))}
with self.assertRaisesRegex(
ValueError,
re.escape("['l1.weight'] appeared in multiple dictionaries"),
):
torch.func.functional_call(mod, (parameters, repeated_parameters), x)
@parametrize("functional_call", [
subtest(torch.func.functional_call, "torch_func"),
subtest(stateless.functional_call, "stateless")
])
def test_functional_call_member_reference(self, functional_call):
class Module(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.l1 = torch.nn.Linear(1, 1)
self.buffer = torch.nn.Buffer(torch.ones(1))
def forward(self, x):
parameters = tuple(self.parameters())
buffers = tuple(self.buffers())
return self.l1(x) + self.buffer, parameters, buffers
module = Module()
weight = torch.tensor([[2.0]])
bias = torch.tensor([5.0])
buffer = torch.tensor([3.0])
extra = torch.tensor([1.0])
extra_p = torch.nn.Parameter(extra)
# All weights
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer}
x = torch.randn(1, 1)
out, parameters, buffers = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + bias + buffer)
self.assertEqual(parameters, (weight, bias))
self.assertEqual(buffers, (buffer,))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias))))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,))))
# Some weights
parameters = {'l1.weight': weight}
x = torch.randn(1, 1)
out, parameters, buffers = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + module.l1.bias + module.buffer)
self.assertEqual(parameters, (weight, module.l1.bias))
self.assertEqual(buffers, (module.buffer,))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias))))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,))))
# All weights with extra keys
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer,
'l1.extra': extra}
x = torch.randn(1, 1)
out, parameters, buffers = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + bias + buffer)
self.assertEqual(parameters, (weight, bias))
self.assertEqual(buffers, (buffer,))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias))))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,))))
# All weights with extra keys with parameters
parameters = {'l1.weight': weight,
'l1.bias': bias,
'buffer': buffer,
'l1.extra': extra_p}
x = torch.randn(1, 1)
out, parameters, buffers = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + bias + buffer)
self.assertEqual(parameters, (weight, bias, extra_p))
self.assertEqual(buffers, (buffer,))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, bias, extra_p))))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (buffer,))))
# Some weights with extra keys
parameters = {'l1.weight': weight,
'l1.extra': extra}
x = torch.randn(1, 1)
out, parameters, buffers = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + module.l1.bias + module.buffer)
self.assertEqual(parameters, (weight, module.l1.bias))
self.assertEqual(buffers, (module.buffer))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias))))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,))))
# Some weights with extra keys with parameters
parameters = {'l1.weight': weight,
'l1.extra': extra_p}
x = torch.randn(1, 1)
out, parameters, buffers = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + module.l1.bias + module.buffer)
self.assertEqual(parameters, (weight, module.l1.bias, extra_p))
self.assertEqual(buffers, (module.buffer))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight, module.l1.bias, extra_p))))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,))))
# Set None
parameters = {'l1.weight': weight,
'l1.bias': None}
x = torch.randn(1, 1)
out, parameters, buffers = functional_call(module, parameters, x)
self.assertEqual(out, x * weight + module.buffer)
self.assertEqual(parameters, (weight,))
self.assertEqual(buffers, (module.buffer))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(parameters, (weight,))))
self.assertTrue(all(t1 is t2 for t1, t2 in zip(buffers, (module.buffer,))))
class TestStatelessDeprecation(TestCase):
def test_private_stateless_warns(self):
script = """
import torch
import warnings
with warnings.catch_warnings(record=True) as w:
from torch.nn.utils import _stateless
exit(len(w))
"""
try:
subprocess.check_output(
[sys.executable, '-W', 'always', '-c', script],
stderr=subprocess.STDOUT,
# On Windows, opening the subprocess with the default CWD makes `import torch`
# fail, so just set CWD to this script's directory
cwd=os.path.dirname(os.path.realpath(__file__)),)
except subprocess.CalledProcessError as e:
self.assertEqual(e.returncode, 1)
else:
self.assertTrue(False, "No warning was raised.")
def test_stateless_functional_call_warns(self):
m = torch.nn.Linear(1, 1)
params = dict(m.named_parameters())
x = torch.randn(3, 1)
with self.assertWarnsRegex(FutureWarning, "Please use `torch.func.functional_call`"):
stateless.functional_call(m, params, x)
class TestPythonOptimizeMode(TestCase):
def test_runs_with_optimize_flag(self):
script = "import torch; import torch._functorch.deprecated"
try:
subprocess.check_output(
[sys.executable, "-OO", "-c", script],
stderr=subprocess.STDOUT,
# On Windows, opening the subprocess with the default CWD makes `import torch`
# fail, so just set CWD to this script's directory
cwd=os.path.dirname(os.path.realpath(__file__)),)
except subprocess.CalledProcessError as e:
self.assertFalse(e.returncode, "Import failed while running python in optimized mode")
instantiate_parametrized_tests(
TestStatelessFunctionalAPI,
)
if __name__ == '__main__':
run_tests()