forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_sympy_utils.py
977 lines (836 loc) · 33 KB
/
test_sympy_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
# Owner(s): ["oncall: pt2"]
import functools
import itertools
import math
import pickle
import sys
from typing import Callable
import sympy
import torch
import torch.fx as fx
from sympy.core.relational import is_ge, is_gt, is_le, is_lt
from torch.testing._internal.common_device_type import skipIf
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TEST_Z3,
TestCase,
)
from torch.utils._sympy.functions import (
FloorDiv,
Identity,
OpaqueUnaryFn_cos,
simple_floordiv_gcd,
)
from torch.utils._sympy.interp import sympy_interp
from torch.utils._sympy.numbers import int_oo, IntInfinity, NegativeIntInfinity
from torch.utils._sympy.reference import (
PythonReferenceAnalysis,
ReferenceAnalysis,
TensorReferenceAnalysis,
)
from torch.utils._sympy.singleton_int import SingletonInt
from torch.utils._sympy.solve import INEQUALITY_TYPES, mirror_rel_op, try_solve
from torch.utils._sympy.value_ranges import ValueRanges
from torch._inductor.bounds import ValueRangeAnalysis
UNARY_OPS = [
"reciprocal",
"square",
"abs",
"neg",
"exp",
"log",
"sqrt",
"floor",
"ceil",
]
BINARY_OPS = [
"truediv",
"floordiv",
# "truncdiv", # TODO
# NB: pow is float_pow
"add",
"mul",
"sub",
"pow",
"pow_by_natural",
"minimum",
"maximum",
"mod",
"bitwise_and",
"bitwise_or",
]
BITWISE_OPS = [
"bitwise_and",
"bitwise_or",
]
UNARY_BOOL_OPS = ["not_"]
BINARY_BOOL_OPS = ["or_", "and_"]
COMPARE_OPS = ["eq", "ne", "lt", "gt", "le", "ge"]
# a mix of constants, powers of two, primes
CONSTANTS = [
-1,
0,
1,
2,
3,
4,
5,
8,
16,
32,
64,
100,
101,
2**24,
2**32,
2**37 - 1,
sys.maxsize - 1,
sys.maxsize,
]
# less constants for N^2 situations
LESS_CONSTANTS = [-1, 0, 1, 2, 100]
# SymPy relational types.
RELATIONAL_TYPES = [sympy.Eq, sympy.Ne, sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le]
def valid_unary(fn, v):
if fn == "log" and v <= 0:
return False
elif fn == "reciprocal" and v == 0:
return False
elif fn == "sqrt" and v < 0:
return False
return True
def valid_binary(fn, a, b):
if fn == "pow" and (
# sympy will expand to x*x*... for integral b; don't do it if it's big
b > 4
# no imaginary numbers
or a <= 0
# 0**0 is undefined
or (a == b == 0)
):
return False
elif fn == "pow_by_natural" and (
# sympy will expand to x*x*... for integral b; don't do it if it's big
b > 4
or b < 0
or (a == b == 0)
):
return False
elif fn == "mod" and (a < 0 or b <= 0):
return False
elif (fn in ["div", "truediv", "floordiv"]) and b == 0:
return False
return True
def generate_range(vals):
for a1, a2 in itertools.product(vals, repeat=2):
if a1 in [sympy.true, sympy.false]:
if a1 == sympy.true and a2 == sympy.false:
continue
else:
if a1 > a2:
continue
# ranges that only admit infinite values are not interesting
if a1 == sympy.oo or a2 == -sympy.oo:
continue
yield ValueRanges(a1, a2)
class TestNumbers(TestCase):
def test_int_infinity(self):
self.assertIsInstance(int_oo, IntInfinity)
self.assertIsInstance(-int_oo, NegativeIntInfinity)
self.assertTrue(int_oo.is_integer)
# is tests here are for singleton-ness, don't use it for comparisons
# against numbers
self.assertIs(int_oo + int_oo, int_oo)
self.assertIs(int_oo + 1, int_oo)
self.assertIs(int_oo - 1, int_oo)
self.assertIs(-int_oo - 1, -int_oo)
self.assertIs(-int_oo + 1, -int_oo)
self.assertIs(-int_oo + (-int_oo), -int_oo)
self.assertIs(-int_oo - int_oo, -int_oo)
self.assertIs(1 + int_oo, int_oo)
self.assertIs(1 - int_oo, -int_oo)
self.assertIs(int_oo * int_oo, int_oo)
self.assertIs(2 * int_oo, int_oo)
self.assertIs(int_oo * 2, int_oo)
self.assertIs(-1 * int_oo, -int_oo)
self.assertIs(-int_oo * int_oo, -int_oo)
self.assertIs(2 * -int_oo, -int_oo)
self.assertIs(-int_oo * 2, -int_oo)
self.assertIs(-1 * -int_oo, int_oo)
self.assertIs(int_oo / 2, sympy.oo)
self.assertIs(-(-int_oo), int_oo) # noqa: B002
self.assertIs(abs(int_oo), int_oo)
self.assertIs(abs(-int_oo), int_oo)
self.assertIs(int_oo**2, int_oo)
self.assertIs((-int_oo) ** 2, int_oo)
self.assertIs((-int_oo) ** 3, -int_oo)
self.assertEqual(int_oo**-1, 0)
self.assertEqual((-int_oo) ** -1, 0)
self.assertIs(int_oo**int_oo, int_oo)
self.assertTrue(int_oo == int_oo)
self.assertFalse(int_oo != int_oo)
self.assertTrue(-int_oo == -int_oo)
self.assertFalse(int_oo == 2)
self.assertTrue(int_oo != 2)
self.assertFalse(int_oo == sys.maxsize)
self.assertTrue(int_oo >= sys.maxsize)
self.assertTrue(int_oo >= 2)
self.assertTrue(int_oo >= -int_oo)
def test_relation(self):
self.assertIs(sympy.Add(2, int_oo), int_oo)
self.assertFalse(-int_oo > 2)
def test_lt_self(self):
self.assertFalse(int_oo < int_oo)
self.assertIs(min(-int_oo, -4), -int_oo)
self.assertIs(min(-int_oo, -int_oo), -int_oo)
def test_float_cast(self):
self.assertEqual(float(int_oo), math.inf)
self.assertEqual(float(-int_oo), -math.inf)
def test_mixed_oo_int_oo(self):
# Arbitrary choice
self.assertTrue(int_oo < sympy.oo)
self.assertFalse(int_oo > sympy.oo)
self.assertTrue(sympy.oo > int_oo)
self.assertFalse(sympy.oo < int_oo)
self.assertIs(max(int_oo, sympy.oo), sympy.oo)
self.assertTrue(-int_oo > -sympy.oo)
self.assertIs(min(-int_oo, -sympy.oo), -sympy.oo)
class TestValueRanges(TestCase):
@parametrize("fn", UNARY_OPS)
@parametrize("dtype", ("int", "float"))
def test_unary_ref(self, fn, dtype):
dtype = {"int": sympy.Integer, "float": sympy.Float}[dtype]
for v in CONSTANTS:
if not valid_unary(fn, v):
continue
with self.subTest(v=v):
v = dtype(v)
ref_r = getattr(ReferenceAnalysis, fn)(v)
r = getattr(ValueRangeAnalysis, fn)(v)
self.assertEqual(r.lower.is_integer, r.upper.is_integer)
self.assertEqual(r.lower, r.upper)
self.assertEqual(ref_r.is_integer, r.upper.is_integer)
self.assertEqual(ref_r, r.lower)
def test_pow_half(self):
ValueRangeAnalysis.pow(ValueRanges.unknown(), ValueRanges.wrap(0.5))
@parametrize("fn", BINARY_OPS)
@parametrize("dtype", ("int", "float"))
def test_binary_ref(self, fn, dtype):
to_dtype = {"int": sympy.Integer, "float": sympy.Float}
# Don't test bitwise methods since value range analysis on a singleton
# range may not return a singleton result.
if fn in BITWISE_OPS:
return
# Don't test float on int only methods
if dtype == "float" and fn in ["pow_by_natural", "mod"]:
return
dtype = to_dtype[dtype]
for a, b in itertools.product(CONSTANTS, repeat=2):
if not valid_binary(fn, a, b):
continue
a = dtype(a)
b = dtype(b)
with self.subTest(a=a, b=b):
r = getattr(ValueRangeAnalysis, fn)(a, b)
if r == ValueRanges.unknown():
continue
ref_r = getattr(ReferenceAnalysis, fn)(a, b)
self.assertEqual(r.lower.is_integer, r.upper.is_integer)
self.assertEqual(ref_r.is_integer, r.upper.is_integer)
self.assertEqual(r.lower, r.upper)
self.assertEqual(ref_r, r.lower)
def test_mul_zero_unknown(self):
self.assertEqual(
ValueRangeAnalysis.mul(ValueRanges.wrap(0), ValueRanges.unknown()),
ValueRanges.wrap(0),
)
self.assertEqual(
ValueRangeAnalysis.mul(ValueRanges.wrap(0.0), ValueRanges.unknown()),
ValueRanges.wrap(0.0),
)
@parametrize("fn", UNARY_BOOL_OPS)
def test_unary_bool_ref_range(self, fn):
vals = [sympy.false, sympy.true]
for a in generate_range(vals):
with self.subTest(a=a):
ref_r = getattr(ValueRangeAnalysis, fn)(a)
unique = set()
for a0 in vals:
if a0 not in a:
continue
with self.subTest(a0=a0):
r = getattr(ReferenceAnalysis, fn)(a0)
self.assertIn(r, ref_r)
unique.add(r)
if ref_r.lower == ref_r.upper:
self.assertEqual(len(unique), 1)
else:
self.assertEqual(len(unique), 2)
@parametrize("fn", BINARY_BOOL_OPS + BITWISE_OPS)
def test_binary_bool_ref_range(self, fn):
vals = [sympy.false, sympy.true]
for a, b in itertools.product(generate_range(vals), repeat=2):
with self.subTest(a=a, b=b):
ref_r = getattr(ValueRangeAnalysis, fn)(a, b)
unique = set()
for a0, b0 in itertools.product(vals, repeat=2):
if a0 not in a or b0 not in b:
continue
with self.subTest(a0=a0, b0=b0):
r = getattr(ReferenceAnalysis, fn)(a0, b0)
self.assertIn(r, ref_r)
unique.add(r)
if ref_r.lower == ref_r.upper:
self.assertEqual(len(unique), 1)
else:
self.assertEqual(len(unique), 2)
@parametrize("fn", UNARY_OPS)
def test_unary_ref_range(self, fn):
# TODO: bring back sympy.oo testing for float unary fns
vals = CONSTANTS
for a in generate_range(vals):
with self.subTest(a=a):
ref_r = getattr(ValueRangeAnalysis, fn)(a)
for a0 in CONSTANTS:
if a0 not in a:
continue
if not valid_unary(fn, a0):
continue
with self.subTest(a0=a0):
r = getattr(ReferenceAnalysis, fn)(sympy.Integer(a0))
self.assertIn(r, ref_r)
# This takes about 4s for all the variants
@parametrize("fn", BINARY_OPS + COMPARE_OPS)
def test_binary_ref_range(self, fn):
# TODO: bring back sympy.oo testing for float unary fns
vals = LESS_CONSTANTS
for a, b in itertools.product(generate_range(vals), repeat=2):
# don't attempt pow on exponents that are too large (but oo is OK)
if fn == "pow" and b.upper > 4 and b.upper != sympy.oo:
continue
with self.subTest(a=a, b=b):
for a0, b0 in itertools.product(LESS_CONSTANTS, repeat=2):
if a0 not in a or b0 not in b:
continue
if not valid_binary(fn, a0, b0):
continue
with self.subTest(a0=a0, b0=b0):
ref_r = getattr(ValueRangeAnalysis, fn)(a, b)
r = getattr(ReferenceAnalysis, fn)(
sympy.Integer(a0), sympy.Integer(b0)
)
if r.is_finite:
self.assertIn(r, ref_r)
# stronger test specially for bitwise ops
@parametrize("fn", BITWISE_OPS)
def test_bitwise_ref_range(self, fn):
# N^4 complexity
vals = range(-4, 5)
for a, b in itertools.product(generate_range(vals), repeat=2):
with self.subTest(a=a, b=b):
for a0, b0 in itertools.product(vals, repeat=2):
if a0 not in a or b0 not in b:
continue
with self.subTest(a0=a0, b0=b0):
ref_r = getattr(ValueRangeAnalysis, fn)(a, b)
r = getattr(ReferenceAnalysis, fn)(a0, b0)
self.assertIn(r, ref_r)
# test that bitwise ops can take bool arguments
bool_vals = [
(3, sympy.true),
(3, sympy.false),
(sympy.true, 3),
(sympy.false, 3),
(sympy.true, sympy.true),
(sympy.true, sympy.false),
(sympy.false, sympy.true),
(sympy.false, sympy.false),
]
for a, b in bool_vals:
with self.subTest(a=a, b=b):
ref_r = getattr(ValueRangeAnalysis, fn)(a, b)
r = getattr(ReferenceAnalysis, fn)(a, b)
self.assertIn(r, ref_r)
class TestSympyInterp(TestCase):
@parametrize(
"fn", UNARY_OPS + BINARY_OPS + UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS
)
def test_interp(self, fn):
# SymPy does not implement truncation for Expressions
if fn in ("div", "truncdiv", "minimum", "maximum", "mod"):
return
is_integer = None
if fn == "pow_by_natural":
is_integer = True
x = sympy.Dummy("x", integer=is_integer)
y = sympy.Dummy("y", integer=is_integer)
vals = CONSTANTS
if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}:
vals = [True, False]
elif fn in BITWISE_OPS:
vals = vals + [True, False]
arity = 1
if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}:
arity = 2
symbols = [x]
if arity == 2:
symbols = [x, y]
for args in itertools.product(vals, repeat=arity):
if arity == 1 and not valid_unary(fn, *args):
continue
elif arity == 2 and not valid_binary(fn, *args):
continue
with self.subTest(args=args):
sargs = [sympy.sympify(a) for a in args]
sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols)
ref_r = getattr(ReferenceAnalysis, fn)(*sargs)
# Yes, I know this is a longwinded way of saying xreplace; the
# point is to test sympy_interp
r = sympy_interp(
ReferenceAnalysis, dict(zip(symbols, sargs)), sympy_expr
)
self.assertEqual(ref_r, r)
@parametrize(
"fn", UNARY_OPS + BINARY_OPS + UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS
)
def test_python_interp_fx(self, fn):
# These never show up from symbolic_shapes
if fn in ("log", "exp"):
return
# Sympy does not support truncation on symbolic shapes
if fn in ("truncdiv", "mod"):
return
vals = CONSTANTS
if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}:
vals = [True, False]
elif fn in BITWISE_OPS:
vals = vals + [True, False]
arity = 1
if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}:
arity = 2
is_integer = None
if fn == "pow_by_natural":
is_integer = True
x = sympy.Dummy("x", integer=is_integer)
y = sympy.Dummy("y", integer=is_integer)
symbols = [x]
if arity == 2:
symbols = [x, y]
for args in itertools.product(vals, repeat=arity):
if arity == 1 and not valid_unary(fn, *args):
continue
elif arity == 2 and not valid_binary(fn, *args):
continue
if fn == "truncdiv" and args[1] == 0:
continue
elif fn in ("pow", "pow_by_natural") and (args[0] == 0 and args[1] <= 0):
continue
elif fn == "floordiv" and args[1] == 0:
continue
with self.subTest(args=args):
# Workaround mpf from symbol error
if fn == "minimum":
sympy_expr = sympy.Min(x, y)
elif fn == "maximum":
sympy_expr = sympy.Max(x, y)
else:
sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols)
if arity == 1:
def trace_f(px):
return sympy_interp(
PythonReferenceAnalysis, {x: px}, sympy_expr
)
else:
def trace_f(px, py):
return sympy_interp(
PythonReferenceAnalysis, {x: px, y: py}, sympy_expr
)
gm = fx.symbolic_trace(trace_f)
self.assertEqual(
sympy_interp(
PythonReferenceAnalysis, dict(zip(symbols, args)), sympy_expr
),
gm(*args),
)
@parametrize(
"fn", UNARY_OPS + BINARY_OPS + UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS
)
def test_tensor_interp(self, fn):
# Skip operations not implemented or not applicable for tensors
if fn in ("div", "truncdiv", "int_truediv", "mod", "round_decimal"):
return
is_integer = None
if fn == "pow_by_natural":
is_integer = True
x = sympy.Symbol("x", integer=is_integer)
y = sympy.Symbol("y", integer=is_integer)
vals = CONSTANTS
if fn in {*UNARY_BOOL_OPS, *BINARY_BOOL_OPS}:
vals = [True, False]
elif fn in BITWISE_OPS:
vals = vals + [True, False]
arity = 1
if fn in {*BINARY_OPS, *BINARY_BOOL_OPS, *COMPARE_OPS}:
arity = 2
symbols = [x]
if arity == 2:
symbols = [x, y]
for args in itertools.product(vals, repeat=arity):
if arity == 1 and not valid_unary(fn, *args):
continue
elif arity == 2 and not valid_binary(fn, *args):
continue
with self.subTest(args=args):
tensor_args = [
torch.tensor(
a, dtype=torch.double if isinstance(a, float) else torch.int64
)
for a in args
]
try:
tensor_fn = getattr(TensorReferenceAnalysis, fn)
sympy_expr = getattr(ReferenceAnalysis, fn)(*symbols)
direct_result = tensor_fn(*tensor_args)
interp_result = sympy_interp(
TensorReferenceAnalysis,
dict(zip(symbols, tensor_args)),
sympy_expr,
)
# Ensure both results are of the same dtype for comparison
if direct_result.dtype != interp_result.dtype:
if (
direct_result.dtype == torch.bool
or interp_result.dtype == torch.bool
):
direct_result = direct_result.to(torch.bool)
interp_result = interp_result.to(torch.bool)
else:
direct_result = direct_result.to(torch.double)
interp_result = interp_result.to(torch.double)
self.assertTrue(
torch.allclose(
direct_result, interp_result, rtol=1e-5, atol=1e-8
),
f"Mismatch for {fn}{args}: direct={direct_result}, interp={interp_result}",
)
if fn in UNARY_BOOL_OPS + BINARY_BOOL_OPS + COMPARE_OPS:
self.assertEqual(direct_result.dtype, torch.bool)
self.assertEqual(interp_result.dtype, torch.bool)
if fn in (
"floor_to_int",
"ceil_to_int",
"round_to_int",
"trunc_to_int",
):
self.assertEqual(direct_result.dtype, torch.int64)
self.assertEqual(interp_result.dtype, torch.int64)
except NotImplementedError:
print(f"Operation {fn} not implemented for TensorReferenceAnalysis")
except Exception as e:
self.fail(f"Unexpected error for {fn}{args}: {str(e)}")
def type_name_fn(type: type) -> str:
return type.__name__
def parametrize_relational_types(*types):
def wrapper(f: Callable):
return parametrize("op", types or RELATIONAL_TYPES, name_fn=type_name_fn)(f)
return wrapper
class TestSympySolve(TestCase):
def _create_integer_symbols(self) -> list[sympy.Symbol]:
return sympy.symbols("a b c", integer=True)
def test_give_up(self):
from sympy import Eq, Ne
a, b, c = self._create_integer_symbols()
cases = [
# Not a relational operation.
a + b,
# 'a' appears on both sides.
Eq(a, a + 1),
# 'a' doesn't appear on neither side.
Eq(b, c + 1),
# Result is a 'sympy.And'.
Eq(FloorDiv(a, b), c),
# Result is a 'sympy.Or'.
Ne(FloorDiv(a, b), c),
]
for case in cases:
e = try_solve(case, a)
self.assertEqual(e, None)
@parametrize_relational_types()
def test_noop(self, op):
a, b, _ = self._create_integer_symbols()
lhs, rhs = a, 42 * b
expr = op(lhs, rhs)
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, r_rhs = r
self.assertEqual(r_expr, expr)
self.assertEqual(r_rhs, rhs)
@parametrize_relational_types()
def test_noop_rhs(self, op):
a, b, _ = self._create_integer_symbols()
lhs, rhs = 42 * b, a
mirror = mirror_rel_op(op)
self.assertNotEqual(mirror, None)
expr = op(lhs, rhs)
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, r_rhs = r
self.assertEqual(r_expr, mirror(rhs, lhs))
self.assertEqual(r_rhs, lhs)
def _test_cases(
self,
cases: list[tuple[sympy.Basic, sympy.Basic]],
thing: sympy.Basic,
op: type[sympy.Rel],
**kwargs,
):
for source, expected in cases:
r = try_solve(source, thing, **kwargs)
self.assertTrue(
(r is None and expected is None)
or (r is not None and expected is not None)
)
if r is not None:
r_expr, r_rhs = r
self.assertEqual(r_rhs, expected)
self.assertEqual(r_expr, op(thing, expected))
def test_addition(self):
from sympy import Eq
a, b, c = self._create_integer_symbols()
cases = [
(Eq(a + b, 0), -b),
(Eq(a + 5, b - 5), b - 10),
(Eq(a + c * b, 1), 1 - c * b),
]
self._test_cases(cases, a, Eq)
@parametrize_relational_types(sympy.Eq, sympy.Ne)
def test_multiplication_division(self, op):
a, b, c = self._create_integer_symbols()
cases = [
(op(a * b, 1), 1 / b),
(op(a * 5, b - 5), (b - 5) / 5),
(op(a * b, c), c / b),
]
self._test_cases(cases, a, op)
@parametrize_relational_types(*INEQUALITY_TYPES)
def test_multiplication_division_inequality(self, op):
a, b, _ = self._create_integer_symbols()
intneg = sympy.Symbol("neg", integer=True, negative=True)
intpos = sympy.Symbol("pos", integer=True, positive=True)
cases = [
# Divide/multiply both sides by positive number.
(op(a * intpos, 1), 1 / intpos),
(op(a / (5 * intpos), 1), 5 * intpos),
(op(a * 5, b - 5), (b - 5) / 5),
# 'b' is not strictly positive nor negative, so we can't
# divide/multiply both sides by 'b'.
(op(a * b, 1), None),
(op(a / b, 1), None),
(op(a * b * intpos, 1), None),
]
mirror_cases = [
# Divide/multiply both sides by negative number.
(op(a * intneg, 1), 1 / intneg),
(op(a / (5 * intneg), 1), 5 * intneg),
(op(a * -5, b - 5), -(b - 5) / 5),
]
mirror_op = mirror_rel_op(op)
assert mirror_op is not None
self._test_cases(cases, a, op)
self._test_cases(mirror_cases, a, mirror_op)
@parametrize_relational_types()
def test_floordiv(self, op):
from sympy import Eq, Ge, Gt, Le, Lt, Ne
a, b, c = sympy.symbols("a b c")
pos = sympy.Symbol("pos", positive=True)
integer = sympy.Symbol("integer", integer=True)
# (Eq(FloorDiv(a, pos), integer), And(Ge(a, integer * pos), Lt(a, (integer + 1) * pos))),
# (Eq(FloorDiv(a + 5, pos), integer), And(Ge(a, integer * pos), Lt(a, (integer + 1) * pos))),
# (Ne(FloorDiv(a, pos), integer), Or(Lt(a, integer * pos), Ge(a, (integer + 1) * pos))),
special_case = {
# 'FloorDiv' turns into 'And', which can't be simplified any further.
Eq: (Eq(FloorDiv(a, pos), integer), None),
# 'FloorDiv' turns into 'Or', which can't be simplified any further.
Ne: (Ne(FloorDiv(a, pos), integer), None),
Gt: (Gt(FloorDiv(a, pos), integer), (integer + 1) * pos),
Ge: (Ge(FloorDiv(a, pos), integer), integer * pos),
Lt: (Lt(FloorDiv(a, pos), integer), integer * pos),
Le: (Le(FloorDiv(a, pos), integer), (integer + 1) * pos),
}[op]
cases: list[tuple[sympy.Basic, sympy.Basic]] = [
# 'b' is not strictly positive
(op(FloorDiv(a, b), integer), None),
# 'c' is not strictly positive
(op(FloorDiv(a, pos), c), None),
]
# The result might change after 'FloorDiv' transformation.
# Specifically:
# - [Ge, Gt] => Ge
# - [Le, Lt] => Lt
if op in (sympy.Gt, sympy.Ge):
r_op = sympy.Ge
elif op in (sympy.Lt, sympy.Le):
r_op = sympy.Lt
else:
r_op = op
self._test_cases([special_case, *cases], a, r_op)
self._test_cases(
[(special_case[0], None), *cases], a, r_op, floordiv_inequality=False
)
def test_floordiv_eq_simplify(self):
from sympy import Eq, Le, Lt
a = sympy.Symbol("a", positive=True, integer=True)
def check(expr, expected):
r = try_solve(expr, a)
self.assertNotEqual(r, None)
r_expr, _ = r
self.assertEqual(r_expr, expected)
# (a + 10) // 3 == 3
# =====================================
# 3 * 3 <= a + 10 (always true)
# a + 10 < 4 * 3 (not sure)
check(Eq(FloorDiv(a + 10, 3), 3), Lt(a, (3 + 1) * 3 - 10))
# (a + 10) // 2 == 4
# =====================================
# 4 * 2 <= 10 - a (not sure)
# 10 - a < 5 * 2 (always true)
check(Eq(FloorDiv(10 - a, 2), 4), Le(a, -(4 * 2 - 10)))
@skipIf(not TEST_Z3, "Z3 not installed")
def test_z3_proof_floordiv_eq_simplify(self):
import z3
from sympy import Eq, Lt
a = sympy.Symbol("a", positive=True, integer=True)
a_ = z3.Int("a")
# (a + 10) // 3 == 3
# =====================================
# 3 * 3 <= a + 10 (always true)
# a + 10 < 4 * 3 (not sure)
solver = z3.SolverFor("QF_NRA")
# Add assertions for 'a_'.
solver.add(a_ > 0)
expr = Eq(FloorDiv(a + 10, 3), 3)
r_expr, _ = try_solve(expr, a)
# Check 'try_solve' really returns the 'expected' below.
expected = Lt(a, (3 + 1) * 3 - 10)
self.assertEqual(r_expr, expected)
# Check whether there is an integer 'a_' such that the
# equation below is satisfied.
solver.add(
# expr
(z3.ToInt((a_ + 10) / 3.0) == 3)
!=
# expected
(a_ < (3 + 1) * 3 - 10)
)
# Assert that there's no such an integer.
# i.e. the transformation is sound.
r = solver.check()
self.assertEqual(r, z3.unsat)
def test_simple_floordiv_gcd(self):
x, y, z = sympy.symbols("x y z")
# positive tests
self.assertEqual(simple_floordiv_gcd(x, x), x)
self.assertEqual(simple_floordiv_gcd(128 * x, 2304), 128)
self.assertEqual(simple_floordiv_gcd(128 * x + 128 * y, 2304), 128)
self.assertEqual(simple_floordiv_gcd(128 * x + 128 * y + 8192 * z, 9216), 128)
self.assertEqual(simple_floordiv_gcd(49152 * x, 96 * x), 96 * x)
self.assertEqual(simple_floordiv_gcd(96 * x, 96 * x), 96 * x)
self.assertEqual(simple_floordiv_gcd(x * y, x), x)
self.assertEqual(simple_floordiv_gcd(384 * x * y, x * y), x * y)
self.assertEqual(simple_floordiv_gcd(256 * x * y, 8 * x), 8 * x)
# negative tests
self.assertEqual(simple_floordiv_gcd(x * y + x + y + 1, x + 1), 1)
class TestSympyFunctions(TestCase):
def test_pickle(self):
x = OpaqueUnaryFn_cos(sympy.Symbol("a"))
r = pickle.loads(pickle.dumps(x))
self.assertEqual(x, r)
class TestSingletonInt(TestCase):
def test_basic(self):
j1 = SingletonInt(1, coeff=1)
j1_copy = SingletonInt(1, coeff=1)
j2 = SingletonInt(2, coeff=1)
j1x2 = SingletonInt(1, coeff=2)
def test_eq(a, b, expected):
self.assertEqual(sympy.Eq(a, b), expected)
self.assertEqual(sympy.Ne(b, a), not expected)
# eq, ne
test_eq(j1, j1, True)
test_eq(j1, j1_copy, True)
test_eq(j1, j2, False)
test_eq(j1, j1x2, False)
test_eq(j1, sympy.Integer(1), False)
test_eq(j1, sympy.Integer(3), False)
def test_ineq(a, b, expected, *, strict=True):
greater = (sympy.Gt, is_gt) if strict else (sympy.Ge, is_ge)
less = (sympy.Lt, is_lt) if strict else (sympy.Le, is_le)
if isinstance(expected, bool):
# expected is always True
for fn in greater:
self.assertEqual(fn(a, b), expected)
self.assertEqual(fn(b, a), not expected)
for fn in less:
self.assertEqual(fn(b, a), expected)
self.assertEqual(fn(a, b), not expected)
else:
for fn in greater:
with self.assertRaisesRegex(ValueError, expected):
fn(a, b)
for fn in less:
with self.assertRaisesRegex(ValueError, expected):
fn(b, a)
# ge, le, gt, lt
for strict in (True, False):
_test_ineq = functools.partial(test_ineq, strict=strict)
_test_ineq(j1, sympy.Integer(0), True)
_test_ineq(j1, sympy.Integer(3), "indeterminate")
_test_ineq(j1, j2, "indeterminate")
_test_ineq(j1x2, j1, True)
# Special cases for ge, le, gt, lt:
for ge in (sympy.Ge, is_ge):
self.assertTrue(ge(j1, j1))
self.assertTrue(ge(j1, sympy.Integer(2)))
with self.assertRaisesRegex(ValueError, "indeterminate"):
ge(sympy.Integer(2), j1)
for le in (sympy.Le, is_le):
self.assertTrue(le(j1, j1))
self.assertTrue(le(sympy.Integer(2), j1))
with self.assertRaisesRegex(ValueError, "indeterminate"):
le(j1, sympy.Integer(2))
for gt in (sympy.Gt, is_gt):
self.assertFalse(gt(j1, j1))
self.assertFalse(gt(sympy.Integer(2), j1))
# it is only known to be that j1 >= 2, j1 > 2 is indeterminate
with self.assertRaisesRegex(ValueError, "indeterminate"):
gt(j1, sympy.Integer(2))
for lt in (sympy.Lt, is_lt):
self.assertFalse(lt(j1, j1))
self.assertFalse(lt(j1, sympy.Integer(2)))
with self.assertRaisesRegex(ValueError, "indeterminate"):
lt(sympy.Integer(2), j1)
# mul
self.assertEqual(j1 * 2, j1x2)
# Unfortunately, this doesn't not automatically simplify to 2*j1
# since sympy.Mul doesn't trigger __mul__ unlike the above.
self.assertIsInstance(sympy.Mul(j1, 2), sympy.core.mul.Mul)
with self.assertRaisesRegex(ValueError, "cannot be multiplied"):
j1 * j2
self.assertEqual(j1.free_symbols, set())
class TestIdentity(TestCase):
def test_expand_identity(self):
"""
Test removing an identity via expansion.
"""
x = sympy.Symbol("x")
arg = x + sympy.S.One
expr = Identity(arg)
expanded = expr.expand(identity=True)
self.assertEqual(expanded.count(Identity), 0)
self.assertEqual(expanded, arg)
instantiate_parametrized_tests(TestValueRanges)
instantiate_parametrized_tests(TestSympyInterp)
instantiate_parametrized_tests(TestSympySolve)
if __name__ == "__main__":
run_tests()