forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_throughput_benchmark.py
132 lines (100 loc) · 3.92 KB
/
test_throughput_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Owner(s): ["module: unknown"]
import torch
from torch.testing._internal.common_utils import run_tests, TemporaryFileName, TestCase
from torch.utils import ThroughputBenchmark
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
super().__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
@torch.jit.script_method
def forward(self, x1, x2):
h1_relu = self.linear1(x1).clamp(min=0)
h2_relu = self.linear1(x2).clamp(min=0)
cat = torch.cat((h1_relu, h2_relu), 1)
y_pred = self.linear2(cat)
return y_pred
class TwoLayerNetModule(torch.nn.Module):
def __init__(self, D_in, H, D_out):
super().__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
def forward(self, x1, x2):
h1_relu = self.linear1(x1).clamp(min=0)
h2_relu = self.linear1(x2).clamp(min=0)
cat = torch.cat((h1_relu, h2_relu), 1)
y_pred = self.linear2(cat)
return y_pred
class TestThroughputBenchmark(TestCase):
def linear_test(self, Module, profiler_output_path=""):
D_in = 10
H = 5
D_out = 15
B = 8
NUM_INPUTS = 2
module = Module(D_in, H, D_out)
inputs = []
for i in range(NUM_INPUTS):
inputs.append([torch.randn(B, D_in), torch.randn(B, D_in)])
bench = ThroughputBenchmark(module)
for input in inputs:
# can do both args and kwargs here
bench.add_input(input[0], x2=input[1])
for i in range(NUM_INPUTS):
# or just unpack the list of inputs
module_result = module(*inputs[i])
bench_result = bench.run_once(*inputs[i])
torch.testing.assert_close(bench_result, module_result)
stats = bench.benchmark(
num_calling_threads=4,
num_warmup_iters=100,
num_iters=1000,
profiler_output_path=profiler_output_path,
)
print(stats)
def test_script_module(self):
self.linear_test(TwoLayerNet)
def test_module(self):
self.linear_test(TwoLayerNetModule)
def test_profiling(self):
with TemporaryFileName() as fname:
self.linear_test(TwoLayerNetModule, profiler_output_path=fname)
def linear_with_compile_test(self, Module, dtype):
from contextlib import nullcontext
from torch._dynamo import config
from torch._inductor import config as inductor_config
config.error_on_recompile = True
inductor_config.cpp_wrapper = True
inductor_config.freezing = True
D_in = 10
H = 5
D_out = 15
B = 8
autocast = dtype != torch.float32
module = Module(D_in, H, D_out)
input = (torch.randn(B, D_in), torch.randn(B, D_in))
with torch.no_grad(), torch.amp.autocast("cpu", enabled=autocast, dtype=dtype):
torch._dynamo.reset()
module(*input)
module = torch.compile(module)
module(*input)
module(*input)
ctx = nullcontext()
if dtype == torch.float16 or dtype == torch.bfloat16:
ctx = torch.amp.autocast("cpu", enabled=autocast, dtype=dtype)
with torch.no_grad(), ctx:
bench = ThroughputBenchmark(module)
bench.add_input(*input)
module_result = module(*input)
bench_result = bench.run_once(*input)
torch.testing.assert_close(bench_result, module_result)
stats = bench.benchmark(
num_calling_threads=4, num_warmup_iters=100, num_iters=1000
)
print(stats)
def test_compile(self):
dtypes = [torch.float32, torch.float16, torch.bfloat16]
for dtype in dtypes:
self.linear_with_compile_test(TwoLayerNetModule, dtype)
if __name__ == "__main__":
run_tests()