forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_utils.py
1186 lines (1004 loc) · 40.7 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# mypy: allow-untyped-defs
# Owner(s): ["module: unknown"]
import os
import random
import re
import shutil
import subprocess
import sys
import tempfile
import textwrap
import traceback
import unittest
import warnings
from typing import Any
import torch
import torch.cuda
import torch.nn as nn
import torch.utils.cpp_extension
import torch.utils.data
from torch._utils import try_import
from torch.autograd._functions.utils import check_onnx_broadcast
from torch.onnx.symbolic_opset9 import _prepare_onnx_paddings
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyCPU,
ops,
)
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_utils import ( # type: ignore[attr-defined]
IS_FBCODE,
IS_SANDCASTLE,
IS_WINDOWS,
load_tests,
)
from torch.utils._device import set_device
from torch.utils._pytree import tree_all_only, tree_any
from torch.utils._traceback import (
CapturedTraceback,
format_traceback_short,
report_compile_source_on_error,
)
from torch.utils.checkpoint import (
_infer_device_type,
checkpoint,
checkpoint_sequential,
get_device_states,
)
from torch.utils.data import DataLoader
# load_tests from torch.testing._internal.common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
HAS_CUDA = torch.cuda.is_available()
from torch.testing._internal.common_utils import run_tests, TestCase
class RandomDatasetMock(torch.utils.data.Dataset):
def __getitem__(self, index):
return torch.tensor([torch.rand(1).item(), random.uniform(0, 1)])
def __len__(self):
return 1000
class TestCheckpoint(TestCase):
# This runs checkpoint_sequential on each of the nets in
# module_lists_to_compare, and compares them against the uncheckpointed model.
# To compare, it checks outputs as well as input gradients and parameter gradients
def _check_checkpoint_sequential(
self,
model,
module_lists_to_compare,
num_chunks,
input,
use_reentrant,
):
# not checkpointed
out = model(input)
out_not_checkpointed = out.detach().clone()
model.zero_grad()
out.sum().backward()
grad_not_checkpointed = {
name: param.grad.detach().clone()
for name, param in model.named_parameters()
}
input_grad_not_checkpointed = input.grad.detach().clone()
for model_to_compare in module_lists_to_compare:
# checkpointed model by passing list of modules
detached = input.detach()
detached.requires_grad = True
# pass list of modules to checkpoint
out = checkpoint_sequential(
model_to_compare, num_chunks, detached, use_reentrant=use_reentrant
)
out_checkpointed = out.detach().clone()
model.zero_grad()
out.sum().backward()
grad_checkpointed = {
name: param.grad.detach().clone()
for name, param in model.named_parameters()
}
input_grad_checkpointed = detached.grad.detach().clone()
# compare outputs as well as the gradients of input and parameters
self.assertEqual(out_checkpointed, out_not_checkpointed)
self.assertEqual(input_grad_not_checkpointed, input_grad_checkpointed)
for name in grad_checkpointed:
self.assertEqual(grad_checkpointed[name], grad_not_checkpointed[name])
# Test whether checkpoint is being triggered or not. For this, we check
# the number of times forward pass happens
def test_checkpoint_trigger(self):
class Net(nn.Module):
def __init__(self) -> None:
super().__init__()
self.counter = 0
def forward(self, input_var):
self.counter += 1
# For reentrant, need to have autograd actually
# pack a tensor to trigger recomp
ret = input_var * torch.tensor(2.0)
return ret
# checkpointed
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
modules = [Net() for _ in range(10)]
for m in modules:
self.assertEqual(m.counter, 0)
input_var = torch.randn(3, 4, requires_grad=True)
out = checkpoint_sequential(
modules, 2, input_var, use_reentrant=use_reentrant
)
for m in modules:
self.assertEqual(m.counter, 1)
out.sum().backward()
for m in modules[: (len(modules) // 2)]:
self.assertEqual(m.counter, 2)
for m in modules[(len(modules) // 2) :]:
self.assertEqual(m.counter, 1)
def test_checkpoint_valid(self):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU(),
)
input_var = torch.randn(1, 100, requires_grad=True)
# checkpointed
chunks = 2
modules = list(model.children())
out = checkpoint_sequential(modules, chunks, input_var, use_reentrant=True)
with self.assertRaisesRegex(
RuntimeError, "torch.utils.checkpoint is incompatible"
):
torch.autograd.grad(
outputs=[out],
grad_outputs=[torch.ones(1, 5)],
inputs=[input_var],
create_graph=True,
)
# works with use_reentrant=False, and grads are the same
out = model(input_var)
grads_no_checkpoint = torch.autograd.grad(
outputs=[out],
grad_outputs=[torch.ones(1, 5)],
inputs=[input_var],
create_graph=True,
)
out_checkpoint = checkpoint_sequential(
modules, chunks, input_var, use_reentrant=False
)
# check outputs are the same
self.assertEqual(out_checkpoint, out)
grads_checkpoint = torch.autograd.grad(
outputs=[out_checkpoint],
grad_outputs=[torch.ones(1, 5)],
inputs=[input_var],
create_graph=True,
)
self.assertEqual(grads_no_checkpoint, grads_checkpoint)
def test_checkpoint(self):
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
model = nn.Sequential(
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU(),
)
# Compare uncheckpointed model with its checkpointed counterparts
# In addition to running checkpoint_sequential on the nn.Sequential
# instance, we also run the function on the list of functions within
# the module.
self._check_checkpoint_sequential(
model,
[list(model.children()), model],
2,
torch.randn(1, 100, requires_grad=True),
use_reentrant=use_reentrant,
)
def test_checkpoint_module_list(self):
class ModuleListNet(nn.Module):
def __init__(self) -> None:
super().__init__()
module_list = [
nn.Linear(100, 50),
nn.ReLU(),
nn.Linear(50, 20),
nn.ReLU(),
nn.Linear(20, 5),
nn.ReLU(),
]
self.module_list = nn.ModuleList(module_list)
def forward(self, input):
for layer in self.module_list:
input = layer(input)
return input
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
model = ModuleListNet()
# Compare uncheckpointed model with its checkpointed counterparts.
self._check_checkpoint_sequential(
model,
[list(model.module_list.children()), model.module_list],
2,
torch.randn(1, 100, requires_grad=True),
use_reentrant=use_reentrant,
)
def test_checkpoint_sequential_deprecated_multiple_args(self):
class Two(nn.Module):
def forward(self, a, b):
return a, b
model = nn.Sequential(Two())
a = torch.randn(1, 100, requires_grad=True)
b = torch.randn(1, 100, requires_grad=True)
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
with self.assertRaises(TypeError):
checkpoint_sequential(model, 1, a, b) # type: ignore[call-arg]
def test_checkpoint_sequential_deprecated_no_args(self):
class Noop(nn.Module):
def forward(self):
pass
model = nn.Sequential(Noop())
for use_reentrant in [True, False]:
with self.subTest(use_reentrant=use_reentrant):
with self.assertRaises(TypeError):
checkpoint_sequential(model, 1) # type: ignore[call-arg]
def test_checkpoint_rng_cpu(self):
for _ in range(5):
inp = torch.randn(20000, device="cpu").requires_grad_()
phase1 = torch.nn.Dropout()
phase2 = torch.nn.Dropout()
def run_fn(input):
return phase2(input)
state = torch.get_rng_state()
out = phase1(inp)
out = checkpoint(run_fn, out, use_reentrant=True)
out.sum().backward()
grad_with_checkpointing = inp.grad
torch.set_rng_state(state)
inp.grad = None
out = phase1(inp)
out = run_fn(out)
out.sum().backward()
grad_no_checkpointing = inp.grad
self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
@unittest.skipIf(not HAS_CUDA, "No CUDA")
def test_checkpoint_rng_cuda(self):
for _ in range(5):
inp = torch.randn(20000, device="cuda").requires_grad_()
phase1 = torch.nn.Dropout()
phase2 = torch.nn.Dropout()
def run_fn(input):
return phase2(input)
state = torch.cuda.get_rng_state()
out = phase1(inp)
out = checkpoint(run_fn, out, use_reentrant=True)
out.sum().backward()
grad_with_checkpointing = inp.grad
torch.cuda.set_rng_state(state)
inp.grad = None
out = phase1(inp)
out = run_fn(out)
out.sum().backward()
grad_no_checkpointing = inp.grad
self.assertEqual(grad_with_checkpointing, grad_no_checkpointing)
@unittest.skipIf(not HAS_CUDA, "No CUDA")
def test_checkpoint_not_preserve_rng_state_and_without_reentrant(self):
inp = torch.randn(2, device="cuda").requires_grad_()
layer = torch.nn.Dropout()
def run_fn(input):
return layer(input)
out = checkpoint(run_fn, inp, use_reentrant=False, preserve_rng_state=False)
out.sum().backward()
# This should run without error
def test_checkpoint_non_tensor(self):
def run_fn(tensor1, tensor2):
if tensor2 is None:
return tensor1
return tensor1 + tensor2
input_var = torch.randn(1, 100, requires_grad=True)
out = checkpoint(run_fn, input_var, None, use_reentrant=True)
out.sum().backward()
def test_checkpoint_non_tensor_inputs_outputs(self):
def foo(t1, t2, scale, t3):
t4 = t1 + t2 * t3
t5 = t1 * t2 + t3
t4 *= scale
t5 *= scale
return scale, t4, None, True, t5, "bar", t1
t1 = torch.rand(10, requires_grad=True)
t2 = torch.rand(10, requires_grad=True)
t3 = torch.rand(10)
scale = random.randint(0, 10)
res = checkpoint(foo, t1, t2, scale, t3, use_reentrant=True)
self.assertEqual(scale, res[0])
self.assertEqual((t1 + t2 * t3) * scale, res[1])
self.assertEqual(None, res[2])
self.assertEqual(True, res[3])
self.assertEqual((t1 * t2 + t3) * scale, res[4])
self.assertEqual("bar", res[5])
self.assertEqual(t1, res[6])
# Validate running backward.
res[1].sum().backward(retain_graph=True)
res[4].sum().backward(retain_graph=True)
res[6].sum().backward()
with self.assertRaisesRegex(
RuntimeError, "Trying to backward through the graph a second time"
):
res[6].sum().backward()
t1_grad = t1.grad
t2_grad = t2.grad
# Reset grads, run without checkpoint and validate we receive same grads.
t1.grad = None
t2.grad = None
res = foo(t1, t2, scale, t3)
torch.autograd.backward([res[1].sum(), res[4].sum(), res[6].sum()])
self.assertEqual(t1.grad, t1_grad)
self.assertEqual(t2.grad, t2_grad)
def test_checkpoint_no_tensors(self):
def foo(t1, t2, scale, t3):
t4 = t1 + t2 * t3
t5 = t1 * t2 + t3
t4 *= scale
t5 *= scale
return scale, t4, None, True, t5, "bar", t1
t1 = random.random()
t2 = random.random()
t3 = random.random()
scale = random.randint(0, 10)
res = checkpoint(foo, t1, t2, scale, t3, use_reentrant=True)
self.assertEqual(scale, res[0])
self.assertEqual((t1 + t2 * t3) * scale, res[1])
self.assertEqual(None, res[2])
self.assertEqual(True, res[3])
self.assertEqual((t1 * t2 + t3) * scale, res[4])
self.assertEqual("bar", res[5])
self.assertEqual(t1, res[6])
def test_checkpoint_partial_grad(self):
def run_fn(tensor1, tensor2):
# tensor 2 is used for other application logic
return tensor1, tensor2
input_var = torch.randn(1, 4, requires_grad=True)
input_var2 = torch.randn(1, 4, requires_grad=False)
out = checkpoint(run_fn, input_var, input_var2, use_reentrant=True)
out[0].sum().backward()
def run_fn2(tensor1, tensor2):
return tensor1
input_var = torch.randn(1, 4, requires_grad=False)
input_var2 = torch.randn(1, 4, requires_grad=True)
with self.assertRaisesRegex(
RuntimeError,
r"none of output has requires_grad=True, this checkpoint\(\) is not necessary",
):
out = checkpoint(run_fn2, input_var, input_var2, use_reentrant=True)
out.sum().backward()
@unittest.skipIf(not torch.cuda.is_available(), "Test requires CUDA")
def test_checkpointing_without_reentrant_early_free(self):
# I don't know how to check if the temporary saved variable buffer
# get de-allocated directly. So using cuda memory usage as a proxy
def _do_test(fn, should_free):
stats: list[int] = []
def track(x, idx):
# Track that at each step of the backward, some Tensor were
# de-allocated (which correspond to the checkpoint storage being
# emptied at each step)
def hook(_unused):
self.assertEqual(len(stats), idx)
torch.cuda.synchronize()
stats.append(torch.cuda.memory_allocated())
if idx > 0:
if should_free:
self.assertLess(stats[idx], stats[idx - 1])
else:
self.assertEqual(stats[idx], stats[idx - 1])
x.register_hook(hook)
def test_fn(x):
# The main property of this function is that it contains multiple
# operations that save gradients in a chain.
x = x**2
track(x, 2)
x = x**2
track(x, 1)
x = x**2
track(x, 0)
x = x**2
return x.sum()
fn(test_fn)
return stats
x = torch.zeros(10, device="cuda", requires_grad=True)
x.grad = torch.zeros_like(x)
# In a regular backward, buffers get eagerly freed
non_retain_stats = _do_test(lambda fn: fn(x).backward(), True)
# In a retain_grad backward, buffers get preserved
_unused_retain_stats = _do_test(
lambda fn: fn(x).backward(retain_graph=True), False
)
# In a regular backward with checkpoint, buffers get eagerly freed
checkpoint_non_retain_stats = _do_test(
lambda fn: checkpoint(fn, x, use_reentrant=False).backward(), True
)
# In a retain_grad backward with checkpoint, buffers get eagerly freed
checkpoint_retain_stats = _do_test(
lambda fn: checkpoint(fn, x, use_reentrant=False).backward(
retain_graph=True
),
True,
)
self.assertEqual(non_retain_stats, checkpoint_non_retain_stats)
self.assertEqual(non_retain_stats, checkpoint_retain_stats)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_get_device_states_recursive(self):
inp = {
"foo": torch.rand(10, device="cuda:0"),
"bar": [torch.rand(10, device="cuda:1")],
}
device_ids, device_states = get_device_states(inp)
self.assertEqual(2, len(device_ids))
self.assertEqual(2, len(device_states))
self.assertEqual(0, device_ids[0])
self.assertEqual(1, device_ids[1])
self.assertTrue(isinstance(device_states[0], torch.Tensor))
self.assertTrue(isinstance(device_states[1], torch.Tensor))
def test_infer_device_state_recursive_meta(self):
inp = {"foo": torch.rand(10, device="meta")}
device_type = _infer_device_type(inp)
self.assertEqual("meta", device_type)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_infer_device_state_recursive_multi_cuda(self):
# Check that no warning is issued for either cuda:0, cuda:1 or
# cuda:0, cuda:0 cases since they are both the same device type
inp = {
"foo": torch.rand(10, device="cuda:0"),
"bar": [torch.rand(10, device="cuda:1")],
}
with warnings.catch_warnings():
warnings.simplefilter("error")
device_type = _infer_device_type(inp)
self.assertEqual("cuda", device_type)
inp = {
"foo": torch.rand(10, device="cuda:0"),
"bar": [torch.rand(10, device="cuda:0")],
}
with warnings.catch_warnings():
warnings.simplefilter("error")
device_type = _infer_device_type(inp)
self.assertEqual("cuda", device_type)
# Check that a warning is issued for cuda:0, meta and that it includes
# device type information
inp = {
"foo": torch.rand(10, device="cuda:0"),
"bar": [torch.rand(10, device="meta")],
}
with warnings.catch_warnings(record=True) as w:
device_type = _infer_device_type(inp)
self.assertEqual("cuda", device_type)
self.assertEqual(len(w), 1)
warning_msg = str(w[-1].message)
self.assertTrue(
"Tensor arguments, excluding CPU tensors, are detected on at least two types of devices"
in warning_msg
)
self.assertTrue("Device types: ['cuda', 'meta']" in warning_msg)
self.assertTrue("first device type: cuda" in warning_msg)
class TestDataLoaderUtils(TestCase):
MAX_TIMEOUT_IN_SECOND = 300
def test_random_seed(self):
def run():
dataloader = torch.utils.data.DataLoader(
RandomDatasetMock(),
batch_size=2,
num_workers=4,
shuffle=True,
timeout=self.MAX_TIMEOUT_IN_SECOND,
)
return next(iter(dataloader))
torch.manual_seed(2018)
x1 = run()
torch.manual_seed(2018)
x2 = run()
self.assertEqual(x1, x2)
def test_single_keep(self):
# torch.rand(5, 3, 3, 2) is a Tensor here; technically not a valid input because
# not a Dataset subclass, but needs to stay working so add ignore's
# for type checking with mypy
dataloader: DataLoader = DataLoader(
torch.rand(5, 3, 3, 2), # type: ignore[arg-type]
batch_size=3,
num_workers=0,
drop_last=False,
)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_single_drop(self):
dataloader: DataLoader = DataLoader(
torch.rand(5, 3, 3, 2), # type: ignore[arg-type]
batch_size=3,
num_workers=0,
drop_last=True,
)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
@unittest.skip(
"FIXME: Intermittent CUDA out-of-memory error on Windows and time-out under ASAN"
)
def test_multi_keep(self):
dataloader: DataLoader = DataLoader(
torch.rand(5, 3, 3, 2), # type: ignore[arg-type]
batch_size=3,
num_workers=2,
drop_last=False,
timeout=self.MAX_TIMEOUT_IN_SECOND,
)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 2)
def test_multi_drop(self):
dataloader: DataLoader = DataLoader(
torch.rand(5, 3, 3, 2), # type: ignore[arg-type]
batch_size=3,
num_workers=2,
drop_last=True,
timeout=self.MAX_TIMEOUT_IN_SECOND,
)
dataiter = iter(dataloader)
self.assertEqual(len(list(dataiter)), 1)
test_dir = os.path.abspath(os.path.dirname(str(__file__)))
@unittest.skipIf(
"SKIP_TEST_BOTTLENECK" in os.environ.keys(), "SKIP_TEST_BOTTLENECK is set"
)
class TestBottleneck(TestCase):
def _run(self, command, timeout=30):
"""Returns (return-code, stdout, stderr)"""
import subprocess
p = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True,
)
try:
output, err = p.communicate(timeout=timeout)
except subprocess.TimeoutExpired:
p.kill()
output, err = p.communicate()
rc = p.returncode
output_str = output.decode("ascii")
err_str = err.decode("ascii")
return (rc, output_str, err_str)
def _run_bottleneck(self, test_file, scriptargs=""):
curdir = os.path.dirname(os.path.abspath(__file__))
filepath = f"{curdir}/{test_file}"
if scriptargs != "":
scriptargs = f" {scriptargs}"
rc, out, err = self._run(
f"{sys.executable} -m torch.utils.bottleneck {filepath}{scriptargs}"
)
return rc, out, err
def _check_run_args(self):
# Check that this fails due to missing args
rc, out, err = self._run_bottleneck("bottleneck_test/test_args.py")
self.assertEqual(
rc,
2,
atol=0,
rtol=0,
msg=self._fail_msg("Missing args should error", out + err),
)
# This should succeed
rc, out, err = self._run_bottleneck(
"bottleneck_test/test_args.py", "--foo foo --bar bar"
)
self.assertEqual(
rc,
0,
atol=0,
rtol=0,
msg=self._fail_msg("Should pass args to script", out + err),
)
def _fail_msg(self, msg, output):
return f"{msg}, output was:\n{output}"
def _check_environment_summary(self, output):
results = re.search("Environment Summary", output)
self.assertIsNotNone(
results, self._fail_msg("Should have Environment Summary", output)
)
# Up to five lines away from the heading, there should be the version number
results = re.search(
r"Environment Summary.*(\n.*){,5}\nPyTorch \d+\.\d+", output
)
self.assertIsNotNone(
results, self._fail_msg("Should have PyTorch version", output)
)
def _check_cprof_summary(self, output):
results = re.search("cProfile output", output)
self.assertIsNotNone(
results, self._fail_msg("Should have cProfile output", output)
)
# This assumes that after the cProfile output section we have
# the autograd profiler output
results = re.search(
r"cProfile output.*(\n.*){6,50}\n.*autograd profiler output", output
)
self.assertIsNotNone(
results,
self._fail_msg(
"Distance between cProfile and autograd prof out not in [6, 50] lines",
output,
),
)
def _check_autograd_summary(self, output):
results = re.search("autograd profiler output", output)
self.assertIsNotNone(
results, self._fail_msg("Should have autograd profiler output", output)
)
# This assumes that after the autograd profiler output is the end of the
# output.
results = re.search(r"autograd profiler output.*(\n.*){6,100}", output)
self.assertIsNotNone(
results,
self._fail_msg(
"Distance between autograd prof output and end of output not in [6, 100] lines",
output,
),
)
def _check_cuda(self, output):
if HAS_CUDA:
results = re.search("CUDA mode", output)
self.assertIsNotNone(
results, self._fail_msg("Should tell users CUDA", output)
)
else:
results = re.search("CUDA mode", output)
self.assertIsNone(
results, self._fail_msg("Should not tell users about CUDA", output)
)
@unittest.skipIf(HAS_CUDA, "CPU-only test")
def test_bottleneck_cpu_only(self):
rc, out, err = self._run_bottleneck("bottleneck_test/test.py")
self.assertEqual(rc, 0, msg=f"Run failed with\n{err}")
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
@unittest.skipIf(not HAS_CUDA, "No CUDA")
def test_bottleneck_cuda(self):
rc, out, err = self._run_bottleneck("bottleneck_test/test_cuda.py")
self.assertEqual(rc, 0, msg=f"Run failed with\n{err}")
self._check_run_args()
self._check_environment_summary(out)
self._check_autograd_summary(out)
self._check_cprof_summary(out)
self._check_cuda(out)
from torch.utils.collect_env import get_pretty_env_info
@unittest.skipIf(IS_FBCODE, "runs pip which is not available internally")
class TestCollectEnv(TestCase):
def test_smoke(self):
info_output = get_pretty_env_info()
self.assertTrue(info_output.count("\n") >= 17)
class TestONNXUtils(TestCase):
def test_prepare_onnx_paddings(self):
sizes = [2, 3, 4]
pad = [1, 2, 3, 4]
paddings = _prepare_onnx_paddings(len(sizes), pad)
self.assertEqual(paddings, [0, 3, 1, 0, 4, 2])
def test_check_onnx_broadcast(self):
def try_check_onnx_broadcast(dims1, dims2, expect_broadcast, expect_fail):
broadcast = True
fail = False
try:
broadcast = check_onnx_broadcast(dims1, dims2)
except ValueError:
fail = True
self.assertEqual(broadcast, expect_broadcast)
self.assertEqual(fail, expect_fail)
# Case 1, check the case when len(dims1) < len(dims2) and numel(dims2) > 1
dims1 = [3, 4]
dims2 = [2, 3, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 2, check the case when len(dims1) < len(dims2) and numel(dims2) == 1
dims1 = [3, 4]
dims2 = [1, 1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 3, check the case when len(dims1) > len(dims2) and numel(dims2) == 1
dims1 = [1, 1]
dims2 = [1]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 4, check the case when len(dims1) > len(dims2) and dims1[x:] == dims2
dims1 = [2, 3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, True, False)
# Case 5, check the case when len(dims1) > len(dims2), but dims1[x:] != dims2
dims1 = [2, 3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 6, check the equal case, no broadcast
dims1 = [3, 4]
dims2 = [3, 4]
try_check_onnx_broadcast(dims1, dims2, False, False)
# Case 7, check the case when len(dims1) == len(dims2), but dims1 != dims2
dims1 = [3, 4]
dims2 = [1, 4]
try_check_onnx_broadcast(dims1, dims2, True, True)
# Case 8, check the case when len(dims1) == len(dims2) and numel(s2) == 1
dims1 = [3, 4]
dims2 = [1, 1]
try_check_onnx_broadcast(dims1, dims2, True, False)
class TestHipify(TestCase):
def test_import_hipify(self):
from torch.utils.hipify import hipify_python # noqa: F401
class TestHipifyTrie(TestCase):
def setUp(self):
self.trie = torch.utils.hipify.hipify_python.Trie()
def test_add_and_search_trie(self):
self.trie.add("banana")
self.assertTrue(self.trie.search("banana"))
self.assertFalse(self.trie.search("ban"))
self.assertFalse(self.trie.search("dog"))
def test_add_multiple_and_search_trie(self):
words_to_add = ["banana", "apple", "orange"]
for word in words_to_add:
self.trie.add(word)
for word in words_to_add:
self.assertTrue(self.trie.search(word))
for word in ["ban", "dog", "okay", "app"]:
self.assertFalse(self.trie.search(word))
def test_quote_escape(self):
orig_chars = ["*", "[", ".", "+", "a", "z", "-"]
quoted_strs = ["\\*", "\\[", "\\.", "\\+", "a", "z", "\\-"]
for i in range(len(orig_chars)):
self.assertEqual(self.trie.quote(orig_chars[i]), quoted_strs[i])
def test_export_trie_to_regex(self):
words_to_add = [
"__CUDACC__",
"CUDA_ERROR_CONTEXT_ALREADY_CURRENT",
"CUDA_ERROR_ARRAY_IS_MAPPED",
"CUDA_ERROR_NOT_MAPPED",
"CUDA_ERROR_INVALID_SOURCE",
]
for word in words_to_add:
self.trie.add(word)
regex = self.trie.export_to_regex()
expected_regex = r"(?:CUDA_ERROR_(?:ARRAY_IS_MAPPED|CONTEXT_ALREADY_CURRENT|INVALID_SOURCE|NOT_MAPPED)|__CUDACC__)"
self.assertEqual(regex, expected_regex)
def test_prefix_words_export_trie_to_regex(self):
# test case where some nodes have both children and are also leaf nodes.
words_to_add = ["apple", "app", "ban", "banana"]
for word in words_to_add:
self.trie.add(word)
regex = self.trie.export_to_regex()
expected_regex = r"(?:app(?:le)?|ban(?:ana)?)"
self.assertEqual(regex, expected_regex)
def test_single_export_trie_to_regex(self):
words_to_add = ["cudaErrorInvalidMemcpyDirection"]
for word in words_to_add:
self.trie.add(word)
regex = self.trie.export_to_regex()
expected_regex = "cudaErrorInvalidMemcpyDirection"
self.assertEqual(regex, expected_regex)
def test_char_export_trie_to_regex(self):
self.trie.add("a")
self.assertEqual(self.trie.export_to_regex(), "a")
self.trie.add("b")
self.assertEqual(self.trie.export_to_regex(), "[ab]")
def test_special_char_export_trie_to_regex(self):
self.trie.add(r"c*")
self.assertEqual(self.trie.export_to_regex(), r"c\*")
class TestAssert(TestCase):
def test_assert_true(self):
# verify assertions work as expected
# bool argument
torch._assert(True, "foo")
with self.assertRaisesRegex(AssertionError, "bar"):
torch._assert(False, "bar")
# tensor argument
torch._assert(torch.tensor([True], dtype=torch.bool), "foo")
with self.assertRaisesRegex(AssertionError, "bar"):
torch._assert(torch.tensor([False], dtype=torch.bool), "bar")
def test_assert_scriptable(self):
class M(torch.nn.Module):
def forward(self, x):
torch._assert(x.sum() > 0, "foo")
return x
m = M()
# scriptable
ms = torch.jit.script(m)
# data can be passed without errors
x = torch.randn(4, 4).fill_(1.0)
ms(x)
with self.assertRaisesRegex(torch.jit.Error, "foo"):
ms(torch.tensor([False], dtype=torch.bool))
@unittest.skipIf(IS_SANDCASTLE, "cpp_extension is OSS only")
class TestStandaloneCPPJIT(TestCase):
def test_load_standalone(self):
build_dir = tempfile.mkdtemp()
try:
src_path = os.path.join(build_dir, "main.cpp")
src = textwrap.dedent(
"""\
#include <iostream>
#include <torch/torch.h>
int main() {
auto x = torch::eye(3);
std::cout << x << std::endl;
}
"""
)
with open(src_path, "w") as f:
f.write(src)
exec_path = torch.utils.cpp_extension.load(
"standalone_load_test",
src_path,
build_directory=build_dir,
is_python_module=False,
is_standalone=True,
)
ext = ".exe" if IS_WINDOWS else ""
self.assertEqual(
exec_path, os.path.join(build_dir, f"standalone_load_test{ext}")
)
for shell in [True, False]:
r = subprocess.run(
[exec_path],
shell=shell,
stdout=subprocess.PIPE,
)
self.assertEqual(r.returncode, 0)
self.assertEqual(
# Windows prints "\r\n" for newlines.
textwrap.dedent(r.stdout.decode("utf-8")).replace("\r\n", "\n"),
textwrap.dedent(
"""\
1 0 0
0 1 0
0 0 1
[ CPUFloatType{3,3} ]
"""
),
)