forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexecutor.cpp
405 lines (365 loc) · 13.4 KB
/
executor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#include <torch/csrc/jit/codegen/fuser/executor.h>
#include <ATen/ATen.h>
#include <ATen/ExpandUtils.h>
#include <ATen/core/functional.h>
#include <ATen/core/stack.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/codegen/fuser/compiler.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <torch/csrc/jit/codegen/fuser/kernel_spec.h>
#include <torch/csrc/jit/codegen/fuser/tensor_info.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <optional>
#include <algorithm>
#include <vector>
namespace torch::jit::fuser {
// Returns the "map size" for this run, which is the common size for all
// intermediate tensors.
static std::optional<std::vector<int64_t>> getMapSize(
const KernelSpec& spec,
at::TensorList args,
at::IntArrayRef arg_subset) {
// TODO: this keeps reallocating map_size at every iteration, but we know
// exactly how much storage do we need, so this could be fixed in-place at
// every step. We're just missing a few functions for ATen, but the fix
// should be straightforward.
// Note: left unitialized since empty shape is broadcastable to any shape
std::vector<int64_t> map_size;
map_size.reserve(8);
for (const auto arg_idx : arg_subset) {
auto& arg = args.at(arg_idx);
auto& chunk_desc = spec.inputChunks().at(arg_idx);
if (chunk_desc.nSubTensors() == 1) {
try {
map_size = at::infer_size(map_size, arg.sizes());
} catch (...) {
return std::nullopt;
}
} else {
auto tensor_sizes = arg.sizes().vec();
const auto num_chunks = chunk_desc.nSubTensors();
const auto dim =
at::maybe_wrap_dim(chunk_desc.dim(), tensor_sizes.size());
if (tensor_sizes[dim] % num_chunks != 0) {
return std::nullopt;
}
tensor_sizes[dim] /= num_chunks;
try {
map_size = at::infer_size(map_size, tensor_sizes);
} catch (...) {
return std::nullopt;
}
}
}
return {map_size};
}
// Tries to determine a map size for the instantiated kernel (see above)
static std::optional<std::vector<int64_t>> canRunKernel(
const KernelSpec& spec,
at::TensorList args) {
// Short-circuits on size mismatch
TORCH_CHECK(
args.size() == spec.inputChunks().size(),
"Expected ",
spec.inputChunks().size(),
" arguments, but got ",
args.size());
std::optional<std::vector<int64_t>> map_size;
for (const auto& broadcast_group : spec.inputBroadcastGroups()) {
if (!map_size) {
map_size = getMapSize(spec, args, broadcast_group);
if (!map_size)
return std::nullopt;
} else {
const auto group_map_size = getMapSize(spec, args, broadcast_group);
// Note: this checks that group_map_size is defined AND equal to map_size
if (map_size != group_map_size)
return std::nullopt;
}
}
return map_size;
}
// Arguments are expanded to a common shape, referred to as the "map size,"
// (see above).
// Note: Arguments are mutated by this call, although map_size is restored
// to its original value.
static bool expandArgs(
const KernelSpec& spec,
std::vector<at::Tensor>& args,
std::vector<int64_t>& map_size,
bool dry_run) {
bool has_broadcast = false;
for (size_t i = 0; i < args.size(); ++i) {
auto& arg = args[i];
const auto& pdesc = spec.inputChunks()[i];
if (pdesc.nSubTensors() == 1) {
if (arg.sizes().equals(map_size))
continue;
if (!dry_run) {
arg = arg.expand(map_size);
has_broadcast = true;
} else {
return true;
}
} else {
map_size.at(pdesc.dim()) *= pdesc.nSubTensors();
if (!arg.sizes().equals(map_size)) {
if (!dry_run) {
arg = arg.expand(map_size);
has_broadcast = true;
} else {
return true;
}
}
map_size.at(pdesc.dim()) /= pdesc.nSubTensors();
}
}
return has_broadcast;
}
static bool shouldExpandArgs(
const KernelSpec& spec,
std::vector<at::Tensor>& args,
std::vector<int64_t>& map_size) {
return expandArgs(spec, args, map_size, /*dry_run=*/true);
}
// Note: assumes that inputs are 32-bit addressable
static uint32_t computeNumel(const at::ArrayRef<int64_t> sizes) {
uint32_t result = 1;
for (const auto& size : sizes)
result *= size;
return result;
}
// Note: Assumes that after at::chunk, all inputs are the same size
static std::vector<int64_t> computeMapSize(
const at::Tensor& tensor,
const PartitionDesc& chunkDesc) {
std::vector<int64_t> sizes(tensor.sizes().begin(), tensor.sizes().end());
AT_ASSERT(sizes[chunkDesc.dim()] % chunkDesc.nSubTensors() == 0);
sizes[chunkDesc.dim()] /= chunkDesc.nSubTensors();
return sizes;
}
// Tries to compress sizes and strides according to cont. Emits the result t
// c_sizes, c_strides and throws an error on failure (if can't compress)
static void compressContiguous(
const at::IntArrayRef& sizes,
const at::IntArrayRef& strides,
const std::vector<bool>& cont,
uint32_t* c_sizes,
uint32_t* c_strides) {
size_t compressed_dims = 0;
size_t cur = 0;
size_t ndim = sizes.size();
while (cur < ndim) {
size_t total_size = sizes[cur];
cur++;
while (cont[cur - 1] && cur < ndim) {
AT_ASSERT(strides[cur - 1] == sizes[cur] * strides[cur]);
total_size *= sizes[cur];
cur++;
}
c_sizes[compressed_dims] = total_size;
c_strides[compressed_dims] = strides[cur - 1];
compressed_dims++;
}
if (ndim > 0)
AT_ASSERT(!cont.back() || strides.back() == 1);
}
// Launches the requested fusion on the given device with the given inputs.
// Output pointers are stored in outputs (to be put on the stack later).
static void launchFusion(
const FusedKernel& fusion,
const at::Device device,
const at::ArrayRef<at::Tensor>& inputs,
const at::ArrayRef<IValue>& all_inputs,
std::vector<at::Tensor>& outputs) {
// Fails if fusion and given inputs disagree
AT_ASSERT(inputs.size() == fusion.inputDesc().size());
// Computes number of flattened inputs and outputs
size_t flat_inputs_size = 0;
size_t flat_outputs_size = 0;
for (const auto& c : fusion.chunkDesc())
flat_inputs_size += c.nSubTensors();
for (const auto& c : fusion.concatDesc())
flat_outputs_size += c.nSubTensors();
// Fails if the elements of the first (any) tensor are not expressable as
// a 32-bit integer.
// Note: this code assumes that inputs are 32-bit addressable
// Note: this code assumes that all inputs are of the same size
AT_ASSERT(inputs[0].numel() <= std::numeric_limits<uint32_t>::max());
// Computes map_size, numel from the first input
at::IntArrayRef map_size;
uint32_t numel = 0;
std::vector<int64_t> keep_alive_size;
if (fusion.chunkDesc()[0].isNoop()) {
map_size = inputs[0].sizes();
numel = inputs[0].numel();
} else {
keep_alive_size = computeMapSize(inputs[0], fusion.chunkDesc()[0]);
map_size = keep_alive_size;
numel = computeNumel(map_size);
}
// compute number of scalar inputs and convert them to float
std::vector<double> scalar_inputs;
scalar_inputs.reserve(all_inputs.size());
for (auto const& input : all_inputs) {
if (input.isDouble())
scalar_inputs.push_back(input.to<float>());
}
// Computes the storage needed to store TensorInfo structs for inputs and
// outputs.
size_t uncompressedDim = fusion.inputDesc().at(0).contiguity.size();
size_t maxPossibleTensorInfoSize =
sizeof(TensorInfo) + 2 * sizeof(uint32_t) * uncompressedDim;
size_t maxPossibleBufferSize =
maxPossibleTensorInfoSize * (flat_inputs_size + flat_outputs_size);
std::vector<char> buffer(maxPossibleBufferSize);
char* buffer_next = buffer.data();
// A vector of arguments to the kernel (numel, *input_desc_s, *output_desc_s)
std::vector<void*> arguments;
arguments.reserve(
3 + scalar_inputs.size() + flat_inputs_size + flat_outputs_size);
arguments.push_back(&numel);
auto addTensorInfoRaw = [&](const TensorDesc& desc,
void* data_ptr,
at::IntArrayRef sizes,
at::IntArrayRef strides) {
const auto nDim = desc.nDim(); // NOTE: this is the compressed dim
AT_ASSERT(nDim <= uncompressedDim); // We'd overflow the space otherwise
auto ti = reinterpret_cast<TensorInfo*>(buffer_next);
ti->data = data_ptr;
compressContiguous(
sizes, strides, desc.contiguity, ti->sizes(nDim), ti->strides(nDim));
buffer_next += maxPossibleTensorInfoSize;
arguments.push_back(ti);
};
// Asserts that t's dims can be compressed in the same way as in desc
// (that's what the kernel assumes), and appends it to the arguments vector.
auto addTensorInfo = [&](const TensorDesc& desc, const at::Tensor& t) {
addTensorInfoRaw(desc, t.data_ptr(), t.sizes(), t.strides());
};
// Adds (flattened) input arguments
for (size_t i = 0; i < fusion.inputDesc().size(); ++i) {
const auto& chunk = fusion.chunkDesc()[i];
const at::Tensor& tensor = inputs[i];
if (chunk.isNoop()) {
addTensorInfo(fusion.inputDesc()[i], tensor);
} else {
size_t chunk_offset = map_size[chunk.dim()] * tensor.stride(chunk.dim()) *
elementSize(tensor.scalar_type());
char* data_ptr = reinterpret_cast<char*>(tensor.data_ptr());
for (size_t chunks = 0; chunks < chunk.nSubTensors(); ++chunks) {
addTensorInfoRaw(
*chunk.subTensorDesc(), data_ptr, map_size, tensor.strides());
data_ptr += chunk_offset;
}
}
}
// Adds scalar arguments
for (double& s : scalar_inputs) {
arguments.push_back(&s);
}
// Adds (flattened) output arguments
outputs.reserve(fusion.outputDesc().size());
const auto& ref_options = inputs[0].options();
for (size_t i = 0; i < fusion.outputDesc().size(); ++i) {
const auto& c = fusion.concatDesc()[i];
if (c.isNoop()) {
outputs.push_back(at::empty(
map_size, ref_options.dtype(fusion.outputDesc()[i].scalar_type)));
addTensorInfo(fusion.outputDesc()[i], outputs[i]);
} else {
size_t small_size = map_size[c.dim()];
std::vector<int64_t> concat_size(map_size.begin(), map_size.end());
concat_size[c.dim()] = small_size * c.nSubTensors();
outputs.push_back(at::empty(concat_size, ref_options));
const auto& o = outputs[i];
size_t offset = 0;
for (size_t j = 0; j < c.nSubTensors(); ++j) {
// because the concatenated_output stays live, the underlying data
// in this view remains live through the end of this function
// so there is not need to hold onto this tensor
const auto view = o.narrow(c.dim(), offset, small_size);
addTensorInfo(*c.subTensorDesc(), view);
offset += small_size;
}
}
}
// Skip launching the kernel for zero-element tensor inputs
// launches are skipped, empty zero-sized output is returned
if (numel > 0) {
fusion.launch_raw(numel, arguments);
}
}
bool runFusion(const int64_t key, Stack& stack, std::string* code_out) {
// Short-circuits if fusion isn't enabled
if (!canFuseOnCPULegacy() && !canFuseOnGPU())
return false;
// Acquires the FusionSpec
auto maybe_spec = retrieve(key);
AT_ASSERT(maybe_spec);
auto& spec = *(*maybe_spec);
// Acquires inputs from stack
auto all_inputs = last(stack, spec.nInputs());
std::vector<at::Tensor> inputs;
inputs.reserve(spec.nTensorInputs());
// we know that tensor inputs are first
for (const auto i : c10::irange(spec.nTensorInputs())) {
inputs.emplace_back(all_inputs[i].toTensor());
}
if (!inputs.at(0).defined()) {
return false;
}
// Determines device to dispatch to.
at::Device device = inputs.at(0).device();
// If there's a device mismatch in the inputs or if one of the input is a
// sparse tensor, we use the fallback (which should give a nice error
// message).
for (const auto& t : at::TensorList(inputs).slice(1)) {
// Sparse tensor could not by supported by CUDA fusion, so we bail out.
if (t.device() != device || t.is_sparse()) {
return false;
}
}
// Attempts to run fallback if device fusion is disabled
if (device.is_cuda() && !canFuseOnGPU())
return false;
if (device.is_cpu() && !canFuseOnCPULegacy())
return false;
if (device.is_xpu())
return false;
// Validates sizes and expands inputs as needed
auto maybe_map_size = canRunKernel(spec, inputs);
// Tries to run fallback if map size can't be computed
if (!maybe_map_size)
return false;
if (spec.hasRandom()) {
bool hasBroadcast = shouldExpandArgs(spec, inputs, *maybe_map_size);
if (hasBroadcast)
return false;
}
expandArgs(spec, inputs, *maybe_map_size, /*dry_run=*/false);
// Retrieves the kernel, compiling (and caching) if necessary
ArgSpec arg_spec{inputs, device.index()};
auto maybe_kernel = spec.findKernel(arg_spec);
if (!maybe_kernel) {
const auto kernel = compileKernel(spec, arg_spec, *maybe_map_size, device);
spec.cacheKernel(arg_spec, kernel);
}
maybe_kernel = spec.findKernel(arg_spec);
AT_ASSERT(maybe_kernel);
if (code_out) {
*code_out = maybe_kernel.value()->code();
}
// Launches fusion
std::vector<at::Tensor> outputs;
launchFusion(*(*maybe_kernel), device, inputs, all_inputs, outputs);
// Updates stack
drop(stack, spec.nInputs());
stack.insert(
stack.end(),
std::make_move_iterator(outputs.begin()),
std::make_move_iterator(outputs.end()));
return true;
}
} // namespace torch::jit::fuser