forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfallback.cpp
47 lines (39 loc) · 1.37 KB
/
fallback.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <torch/csrc/jit/codegen/fuser/fallback.h>
#include <ATen/core/functional.h> //fmap
#include <ATen/core/stack.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <stdexcept>
namespace torch::jit::fuser {
namespace {
c10::AliasAnalysisKind aliasAnalysisIsSpecialCase() {
return AliasAnalysisKind::INTERNAL_SPECIAL_CASE;
}
} // namespace
// Registers fused operators so that fused graphs can properly generate fallback
// code.
RegisterOperators reg_fused_operators({Operator(
prim::FusedConcat,
[](const Node* node) -> Operation {
int64_t dim = node->i(attr::dim);
int64_t num_inputs = node->inputs().size();
return [dim, num_inputs](Stack& stack) {
auto result = at::cat(
fmap(
last(stack, num_inputs),
[](const IValue& i) { return i.toTensor(); }),
dim);
drop(stack, num_inputs);
pack(stack, std::move(result));
};
},
aliasAnalysisIsSpecialCase())});
void runFallback(int64_t key, Stack& stack) {
auto maybe_spec = retrieve(key);
if (!maybe_spec)
throw std::runtime_error("Failed to find fusion spec to run fallback.");
InterpreterState{(*maybe_spec)->code()}.run(stack);
}
} // namespace torch::jit::fuser