forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpartition_desc.h
58 lines (50 loc) · 1.71 KB
/
partition_desc.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#pragma once
#include <c10/util/Exception.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/codegen/fuser/tensor_desc.h>
#include <cstdint>
#include <memory>
#include <vector>
namespace torch::jit::fuser {
// Descriptor for chunk-ing an input tensor into subtensors
// OR concat-ing an output tensor from subtensors
// Note: default constructed used for tensors that do not participate in
// chunk or cat operations.
struct TORCH_API PartitionDesc {
PartitionDesc() : nSubTensors_{1}, dim_{0} {}
PartitionDesc(const TensorDesc& _desc, size_t _nSubTensors, size_t _dim)
: nSubTensors_{_nSubTensors}, dim_{_dim} {
AT_ASSERT(nSubTensors_ > 1);
std::vector<bool> cont = _desc.contiguity;
if (dim_ > 0) {
// when we narrow the concatenated output/chunked input
// we make the size[dim] smaller while keeping the stride[dim] the same,
// meaning: stride[dim - 1] != stride[dim]*size[dim]
// so dim - 1 is no longer contiguous
cont[dim_ - 1] = false;
}
subTensorDesc_ = std::make_shared<TensorDesc>(_desc.scalar_type, cont);
}
bool isNoop() const {
return (nSubTensors_ == 1);
}
size_t nSubTensors() const {
return nSubTensors_;
}
size_t dim() const {
return dim_;
}
std::shared_ptr<TensorDesc> subTensorDesc() {
return subTensorDesc_;
}
const std::shared_ptr<TensorDesc> subTensorDesc() const {
return subTensorDesc_;
}
private:
size_t nSubTensors_; // == 1 for tensors that should not be operated on via
// chunk/cat
size_t dim_; // dimension along which the chunk/concat occurs
std::shared_ptr<TensorDesc>
subTensorDesc_; // descriptor for the subtensor, if it exists
};
} // namespace torch::jit::fuser