Skip to content

Commit 858d4a6

Browse files
orionrfacebook-github-bot
authored andcommitted
Cleanup API and remove 'experimental' warning (pytorch#23000)
Summary: This fixes ASAN test issues with pytorch#21786 seen at https://circleci.com/api/v1.1/project/github/pytorch/pytorch/2212325/output/105/0?file=true and lands it again. This cleans up the `torch.utils.tensorboard` API to remove all kwargs usage (which isn't clear to the user) and removes the "experimental" warning in prep for our 1.2 release. We also don't need the additional PyTorch version checks now that we are in the codebase itself. cc yf225, lanpa, natalialunova Pull Request resolved: pytorch#23000 Reviewed By: sanekmelnikov Differential Revision: D16349734 Pulled By: orionr fbshipit-source-id: 604a9cad56868a55e08b509a0c6f42b84f68de95
1 parent fad3031 commit 858d4a6

8 files changed

+1443
-39
lines changed

docs/source/index.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ PyTorch is an optimized tensor library for deep learning using GPUs and CPUs.
5151
torch.utils.data <data>
5252
torch.utils.dlpack <dlpack>
5353
torch.utils.model_zoo <model_zoo>
54-
torch.utils.tensorboard (experimental) <tensorboard>
54+
torch.utils.tensorboard <tensorboard>
5555
onnx
5656
torch.__config__ <__config__>
5757

docs/source/tensorboard.rst

+2-7
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,6 @@
11
torch.utils.tensorboard
22
===================================
33

4-
.. warning::
5-
6-
This code is EXPERIMENTAL and might change in the future. It also
7-
currently does not support all model types for ``add_graph``, which
8-
we are actively working on.
9-
104
Before going further, more details on TensorBoard can be found at
115
https://www.tensorflow.org/tensorboard/
126

@@ -86,7 +80,6 @@ Expected result:
8680
.. automethod:: add_scalar
8781
.. automethod:: add_scalars
8882
.. automethod:: add_histogram
89-
.. automethod:: add_histogram_raw
9083
.. automethod:: add_image
9184
.. automethod:: add_images
9285
.. automethod:: add_figure
@@ -98,3 +91,5 @@ Expected result:
9891
.. automethod:: add_pr_curve
9992
.. automethod:: add_custom_scalars
10093
.. automethod:: add_mesh
94+
.. automethod:: flush
95+
.. automethod:: close
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,319 @@
1+
node {
2+
name: "conv1/XavierFill"
3+
op: "XavierFill"
4+
attr {
5+
key: "_output_shapes"
6+
value {
7+
list {
8+
shape {
9+
dim {
10+
size: 96
11+
}
12+
dim {
13+
size: 3
14+
}
15+
dim {
16+
size: 11
17+
}
18+
dim {
19+
size: 11
20+
}
21+
}
22+
}
23+
}
24+
}
25+
}
26+
node {
27+
name: "conv1/ConstantFill"
28+
op: "ConstantFill"
29+
attr {
30+
key: "_output_shapes"
31+
value {
32+
list {
33+
shape {
34+
dim {
35+
size: 96
36+
}
37+
}
38+
}
39+
}
40+
}
41+
}
42+
node {
43+
name: "classifier/XavierFill"
44+
op: "XavierFill"
45+
attr {
46+
key: "_output_shapes"
47+
value {
48+
list {
49+
shape {
50+
dim {
51+
size: 1000
52+
}
53+
dim {
54+
size: 4096
55+
}
56+
}
57+
}
58+
}
59+
}
60+
}
61+
node {
62+
name: "classifier/ConstantFill"
63+
op: "ConstantFill"
64+
attr {
65+
key: "_output_shapes"
66+
value {
67+
list {
68+
shape {
69+
dim {
70+
size: 1000
71+
}
72+
}
73+
}
74+
}
75+
}
76+
}
77+
node {
78+
name: "conv1/Conv"
79+
op: "Conv"
80+
input: "conv1/data"
81+
input: "conv1/conv1_w"
82+
input: "conv1/conv1_b"
83+
attr {
84+
key: "exhaustive_search"
85+
value {
86+
i: 0
87+
}
88+
}
89+
attr {
90+
key: "kernel"
91+
value {
92+
i: 11
93+
}
94+
}
95+
attr {
96+
key: "order"
97+
value {
98+
s: "NCHW"
99+
}
100+
}
101+
attr {
102+
key: "stride"
103+
value {
104+
i: 4
105+
}
106+
}
107+
}
108+
node {
109+
name: "conv1/Relu"
110+
op: "Relu"
111+
input: "conv1/conv1"
112+
attr {
113+
key: "cudnn_exhaustive_search"
114+
value {
115+
i: 0
116+
}
117+
}
118+
attr {
119+
key: "order"
120+
value {
121+
s: "NCHW"
122+
}
123+
}
124+
}
125+
node {
126+
name: "conv1/MaxPool"
127+
op: "MaxPool"
128+
input: "conv1/conv1_1"
129+
attr {
130+
key: "cudnn_exhaustive_search"
131+
value {
132+
i: 0
133+
}
134+
}
135+
attr {
136+
key: "kernel"
137+
value {
138+
i: 2
139+
}
140+
}
141+
attr {
142+
key: "order"
143+
value {
144+
s: "NCHW"
145+
}
146+
}
147+
attr {
148+
key: "stride"
149+
value {
150+
i: 2
151+
}
152+
}
153+
}
154+
node {
155+
name: "classifier/FC"
156+
op: "FC"
157+
input: "conv1/pool1"
158+
input: "classifier/fc_w"
159+
input: "classifier/fc_b"
160+
attr {
161+
key: "cudnn_exhaustive_search"
162+
value {
163+
i: 0
164+
}
165+
}
166+
attr {
167+
key: "order"
168+
value {
169+
s: "NCHW"
170+
}
171+
}
172+
attr {
173+
key: "use_cudnn"
174+
value {
175+
i: 1
176+
}
177+
}
178+
}
179+
node {
180+
name: "classifier/Softmax"
181+
op: "Softmax"
182+
input: "classifier/fc"
183+
attr {
184+
key: "cudnn_exhaustive_search"
185+
value {
186+
i: 0
187+
}
188+
}
189+
attr {
190+
key: "order"
191+
value {
192+
s: "NCHW"
193+
}
194+
}
195+
}
196+
node {
197+
name: "classifier/LabelCrossEntropy"
198+
op: "LabelCrossEntropy"
199+
input: "classifier/pred"
200+
input: "classifier/label"
201+
}
202+
node {
203+
name: "classifier/AveragedLoss"
204+
op: "AveragedLoss"
205+
input: "classifier/xent"
206+
}
207+
node {
208+
name: "conv1/conv1_w"
209+
op: "Blob"
210+
input: "conv1/XavierFill:0"
211+
}
212+
node {
213+
name: "conv1/conv1_b"
214+
op: "Blob"
215+
input: "conv1/ConstantFill:0"
216+
}
217+
node {
218+
name: "classifier/fc_w"
219+
op: "Blob"
220+
input: "classifier/XavierFill:0"
221+
}
222+
node {
223+
name: "classifier/fc_b"
224+
op: "Blob"
225+
input: "classifier/ConstantFill:0"
226+
}
227+
node {
228+
name: "conv1/data"
229+
op: "Placeholder"
230+
}
231+
node {
232+
name: "conv1/conv1_w"
233+
op: "Blob"
234+
input: "conv1/XavierFill:0"
235+
}
236+
node {
237+
name: "conv1/conv1_b"
238+
op: "Blob"
239+
input: "conv1/ConstantFill:0"
240+
}
241+
node {
242+
name: "conv1/conv1"
243+
op: "Blob"
244+
input: "conv1/Conv:0"
245+
}
246+
node {
247+
name: "conv1/conv1"
248+
op: "Blob"
249+
input: "conv1/Conv:0"
250+
}
251+
node {
252+
name: "conv1/conv1_1"
253+
op: "Blob"
254+
input: "conv1/Relu:0"
255+
}
256+
node {
257+
name: "conv1/conv1_1"
258+
op: "Blob"
259+
input: "conv1/Relu:0"
260+
}
261+
node {
262+
name: "conv1/pool1"
263+
op: "Blob"
264+
input: "conv1/MaxPool:0"
265+
}
266+
node {
267+
name: "conv1/pool1"
268+
op: "Blob"
269+
input: "conv1/MaxPool:0"
270+
}
271+
node {
272+
name: "classifier/fc_w"
273+
op: "Blob"
274+
input: "classifier/XavierFill:0"
275+
}
276+
node {
277+
name: "classifier/fc_b"
278+
op: "Blob"
279+
input: "classifier/ConstantFill:0"
280+
}
281+
node {
282+
name: "classifier/fc"
283+
op: "Blob"
284+
input: "classifier/FC:0"
285+
}
286+
node {
287+
name: "classifier/fc"
288+
op: "Blob"
289+
input: "classifier/FC:0"
290+
}
291+
node {
292+
name: "classifier/pred"
293+
op: "Blob"
294+
input: "classifier/Softmax:0"
295+
}
296+
node {
297+
name: "classifier/pred"
298+
op: "Blob"
299+
input: "classifier/Softmax:0"
300+
}
301+
node {
302+
name: "classifier/label"
303+
op: "Placeholder"
304+
}
305+
node {
306+
name: "classifier/xent"
307+
op: "Blob"
308+
input: "classifier/LabelCrossEntropy:0"
309+
}
310+
node {
311+
name: "classifier/xent"
312+
op: "Blob"
313+
input: "classifier/LabelCrossEntropy:0"
314+
}
315+
node {
316+
name: "classifier/loss"
317+
op: "Blob"
318+
input: "classifier/AveragedLoss:0"
319+
}

0 commit comments

Comments
 (0)